Answer:
Sorry this isn’t going to be any help. You don’t have any statement that I’m able to see.
Explanation:
** Missing information: The vertical distance from surface of liquid to bottom of the object is sought in this question, with the condition that the object is at equilibrium **
Ans: The vertical distance = y = M/(ρA)
Explanation:Support the vertical distance = y
Object's density = M/(A*h) (since A*h = volume)
By applying the condition,
(M/(Ah))/ρ = y/h
M/(ρAh) = y/h
y = M/(ρA)
a) 10 m/s
b) 25 m
Explanation:
a)
The body is moving with a constant acceleration, therefore we can solve the problem by using the following suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
t is the time
For the body in this problem:
u = 0 (the body starts from rest)
is the acceleration
t = 5 s is the time
So, the final velocity is

b)
In this second part, we want to calculate the distance travelled by the body.
We can do it by using another suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
s is the distance travelled
Here we have
u = 0 (the body starts from rest)
is the acceleration
v = 10 m/s is the final velocity
Solving for s,

The acceleration due to gravity would be 5.95 m/s²
A force is known to be a push or pull and it is the change in momentum per time. It can be expressed by using the relation.
- Force = mass × acceleration.
From the parameters given:
- Mass = 105 kg
- Force = 625 N
By replacing the given values into the above equation, we can determine the acceleration.
∴
625 N = 105 kg × acceleration.

acceleration = 5.95 N/kg
acceleration = 5.95 m/s²
Learn more about acceleration(a) here:
brainly.com/question/14344386