plzzz explain me your questions
This is True
Kinetic energy is the energy of motion. The bicyclist is in motion as he pedals up the tall hill. Therefore, the bicyclist contains kinetic energy.
Sum the forces in the y (upward) direction




Applying the kinematic equations of linear motion we have that the displacement as a function of the initial speed, acceleration and time is



Again through the kinematic equation of linear motion that describes velocity as the change of displacement in a given time, we have to



Therefore the horizontal distance between the target and the rocket should be 38.83m
To start with solving this
problem, let us assume a launch angle of 45 degrees since that gives out the
maximum range for given initial speed. Also assuming that it was launched at
ground level since no initial height was given. Using g = 9.8 m/s^2, the
initial velocity is calculated using the formula:
(v sinθ)^2 = (v0 sinθ)^2
– 2 g d
where v is final
velocity = 0 at the peak, v0 is the initial velocity, d is distance = 11 m
Rearranging to find for
v0: <span>
v0 = sqrt (d * g/ sin(2 θ)) </span>
<span>v0 = 10.383 m/s</span>