The reasoning for this is false
The final velocity of the red barge in the collision elastic is 0.311 m/s when it collides with blue barge pf mass 1000000 kg.
Final velocity(v3) of the red barge is calculated by following formula
m1×v1+ m2×v2= (m1+m2)v3
Substituting the value of m1= 150000 kg, v1= 0.25 m/s, m2= 1000000 kg, v2= 0.32 m/s
150000 × 0.25+ 1000000×0.32= (150000+1000000)×v3
37500+ 320000= 1150000×v3
357500= 1150000×v3
v3= 0.311 m/s
<h3>What is elastic collision velocity? </h3>
- The velocity of the target particle after a head-on elastic impact in which the projectile is significantly more massive than the target will be roughly double that of the projectile, but the projectile velocity will remain virtually unaltered.
For more information on elastic collision velocity kindly visit to
brainly.com/question/29051562
#SPJ9
Answer:
434 Hz
Explanation:
According to the Doppler effect, when a source of a wave is moving towards an observer at rest, then the observer will observe an apparent frequency which is higher than the original frequency of the source.
In this situation, Tina is driving towards Rita. Tina is the source of the sound wave (the horn), while RIta is the observer. Since the original frequency of the sound is 400 Hz, Rita will hear a sound with a frequency higher than this value.
The only choice which is higher than 400 Hz is 434 Hz, so this is the frequency that Rita will hear.
Answer:
Rotating the loop until it is perpendicular to the field
Explanation:
Current is induced in a conductor when there is a change in magnetic flux.
The strength of the induced current in a wire loop moving through a magnetic field can be increased or decreased by the following methods:
By increasing the strength of the magnetic field there will be increased in the induced current. If the strength of the magnetic field is decreased then there is a decrease in induced current.
By increasing the speed of the wire there will be increased in the induced current. When the speed of the wire is decreased then there is a decrease in induced current.
By increasing the number of turns of the coil the strength of the induced current can be increased. when there is less number of turns in coils then there is a decrease in induced current.
Rotating the loop until it is perpendicular to the field will not increase the current induced in a wire loop moving through a magnetic field.
Therefore, the option is (c) is correct.
The expansion of the observable universe began <span>with the explosion of a single particle at a definite point in time.</span>