1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
2 years ago
11

Economic growth can be illustrated by: a. ​ an inward shift of the production possibilities curve. b. ​ a movement along the pro

duction possibilities curve. c. ​ a movement from a point on the production possibilities curve to a point inside the production possibilities curve. d. ​ an outward shift of the production possibilities curve.
Physics
1 answer:
erastovalidia [21]2 years ago
6 0

Answer:

Economic growth can be illustrated by:

d.  an outward shift of the production possibilities curve.

Explanation:

Economic growth is the process of increasing the economy's ability to produce goods and services. It is achieved by increasing the quantity or quality of resources.

Production Possibilities refers to the ability of a country to produce goods or services given the limited resources and technology.  It is therefore possible to increase production of both goods at the same time as long as resources allow it.

The Production Possibilities Curve, also known as the production possibilities frontier, is a graph that shows the maximum number of possible units a company can produce if it only produces two products using all of its resources efficiently. Firstly, and most commonly, growth is defined as an increase in the output that an economy produces over a period of time, the minimum being two consecutive quarters. An increase in an economy's productive potential can be shown by an outward shift in the economy's production possibility frontier (PPF).

Each point on the curve shows how much of each good will be produced when resources shift from making more of one good and less of the other. The curve measures the trade-off between producing one good versus another.PPC or production possibility curve is a curve whose basic purpose is to show the different possible combinations of two goods that can be produced within the given available resource.

The two main characteristics of PPC are: slopes downwards to the right: PPC slopes downwards from left to right. It is because in a situation of fuller utilization of the given resources, production of both the goods cannot be increased simultaneously.

You might be interested in
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Juliette [100K]

(a) 0.473

The potential energy of a satellite orbiting around Earth is given by

U=-\frac{GMm}{R+h}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

R is the Earth's radius

h is the altitude of the satellite above the Earth's surface

So the potential energy of satellite A is

U_A=-\frac{GMm}{R+h_A}

while potential energy of satellite B is

U_B=-\frac{GMm}{R+h_B}

Therefore the ratio of the potential energy of satellite B to that of satellite A is

\frac{U_B}{U_A}=\frac{R+h_A}{R+h_B}

and using

hA = 5920 km

hB = 19600 km

R = 6370 km

we find

\frac{U_B}{U_A}=\frac{6370+5920}{6370+19600}=0.473

(b) 0.473

The kinetic energy of a satellite orbiting around Earth instead is given by

K=\frac{GMm}{2(R+h)}

So the kinetic energy of satellite A is

K_A=\frac{GMm}{2(R+h_A)}

while kinetic energy of satellite B is

K_B=\frac{GMm}{2(R+h_B)}

Therefore the ratio of the kinetic energy of satellite B to that of satellite A is

\frac{K_B}{K_A}=\frac{R+h_A}{R+h_B}

which is identical to before, so it  gives

\frac{K_B}{K_A}=\frac{6370+5920}{6370+19600}=0.473

(c) Satellite B

The total energy of a satellite in orbit is given by

E=U+K = -\frac{GMm}{R+h}+\frac{GMm}{2(R+h)}=-\frac{GMm}{2(R+h)}

We see that the total energy is:

1) negative (because the satellite is on a bound orbit)

2) inversely proportional to the distance of the satellite from the Earth's center, R+h

So the magnitude of the fraction in the equation is larger for the satellite which is closer to the Earth's surface (satellite A), but since the energy is negative, this means that the total energy of this satellite is smaller than that of satellite B. So, satellite B has a greater total energy.

(d) 1.03\cdot 10^7 J

We have to calculate the total energy of each satellite.

Given:

G=6.67\cdot 10^{-11}

M=5.98\cdot 10^{24} kg

m = 12.0 kg

R+h_A = 6370 km+5920 km=12290 km = 12.3 \cdot 10^6 m

R+h_B = 6370 km+19600 km=25970 km = 26.0 \cdot 10^6 m

We find:

E_A = - \frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24})(12.0)}{2(12.3\cdot 10^6)}=-1.95\cdot 10^{7} J

E_B = - \frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24})(12.0)}{2(26.0\cdot 10^6)}=-9.2\cdot 10^{6} J

So the difference in total energy is

E_B-E_A = -9.2\cdot 10^6 - (-1.95\cdot 10^7) =1.03\cdot 10^7 J

6 0
3 years ago
Which equation is correct???
lawyer [7]

Answer:

mechanical energy= kinetic + potential

8 0
2 years ago
One of the purposes of an experiment is to determine whether the dependent variable affects the independent variable. Please sel
sweet-ann [11.9K]
The answer is False. False is the answer
7 0
3 years ago
Read 2 more answers
A planet orbits a star, in a year of length 2.35 x 107 s, in a nearly circular orbit of radius 3.49 x 1011 m. With respect to th
Naya [18.7K]

Answer:

a)   w = 9.599 10⁴ rad / s , b)   v = 3.35 10¹⁶ m / s , c)    a = 3.22  10²¹ m / s²

Explanation:

For this exercise we must use the relation of angular kinematics

a) angular velocity, the distance remembered in orbit between time (period)

         w = 2π r / T

         w = 2 π 3.59 10¹¹ / 2.35 10⁷

         w = 9.599 10⁴ rad / s

b) linear and angular velocity are related by the equation

          v = w r

          v = 9,599 10⁴ 3.49 10¹¹

          v = 3.35 10¹⁶ m / s

c) the centripetal acceleration is

            a = v² / r = w² r

            a = (9,599 10⁴)²   3.49 10¹¹

            a = 3.22  10²¹ m / s²

7 0
3 years ago
ASAP ASAP ASAP
mylen [45]

The experiments will involve two billiard balls of known masses, m₁ and m₂, and velocities u₁ and u₂. The two are allowed to collide and the velocities of the balls after the collision v₁ and v₂ are recorded.

The momentum before and after the collision is then calculated as follows:

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

<h3>What is the statement of the law of conservation of momentum?</h3>

The law of the conservation of momentum states that the momentum before and after collision in a system of colliding bodies is conserved

The momentum of a body is calculated using the formula below:

Momentum = mass * velocity.

Hence, for the two billiard balls, the momentum before and after the collision is conserved.

Learn more about momentum at: brainly.com/question/1042017

#SPJ1

3 0
1 year ago
Other questions:
  • A container of negligible heat capacity has in it 456 g of ice at - 25 . 0°C . Heat is supplied to the container at the rate of
    10·1 answer
  • (Will give brainliest answer)
    7·2 answers
  • A good model of the solar system to present to elementary is the Ptolemaic model.
    15·1 answer
  • A more realistic car would cause the wheels to spin in a manner that would result in the ground pushing it forward with a consta
    10·1 answer
  • Which explains earthquakes and volcanic eruptions?
    9·2 answers
  • What’s the answer anyone??
    9·2 answers
  • Which would be a common-sense practice in a lab environment?
    7·1 answer
  • HEEEEEEELLLLLPPPPPPP 20 points and Brainliest
    6·1 answer
  • The flow of electric current through a gas without any external influence (ionizer) is called
    11·1 answer
  • Can anyone say this is from which book And can you solve these question
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!