Answer:
7.08 m/s²
Explanation:
Given:
v₀ = 20.0 m/s
v = 105 m/s
t = 12.0 s
Find: a
v = at + v₀
105 m/s = a (12.0 s) + 20.0 m/s
a = 7.08 m/s²
Answer:
True
Explanation:
Magnetic field lines outside of a permanent magnet always run from the north magnetic pole to the south magnetic pole. Therefore, the magnetic field lines of the earth run from the southern geographic hemisphere towards the northern geographic hemisphere.
Answer:
The constant angular acceleration of the centrifuge = -252.84 rad/s²
Explanation:
We will be using the equations of motion for this calculation.
Although, the parameters of this equation of motion will be composed of the angular form of the normal parameters.
First of, we write the given parameters.
w₀ = initial angular velocity = 2πf₀
f₀ = 3650 rev/min = (3650/60) rev/s = 60.83 rev/s
w₀ = 2πf₀ = 2π × 60.83 = 382.38 rad/s
θ = 46 revs = 46 × 2π = 289.14 rad
w = final angular velocity = 0 rad/s (since the centrifuge come rest at the end)
α = ?
Just like v² = u² + 2ay
w² = w₀² + 2αθ
0 = 382.38² + [2α × (289.14)]
578.29α = -146,214.4644
α = (-146,214.4644/578.29)
α = - 252.84 rad/s²
Hope this Helps!!!
Answer:
If a coil of wire is placed in a changing magnetic field, a current will be induced in the wire. This current flows because something is producing an electric field that forces the charges around the wire. (It cannot be the magnetic force since the charges are not initially moving). ... that determines the induced current.
<span>If the entropy is greater than the enthalpy, it will have more spontinaity</span>