According to Newton's 3rd law, there will be equal and opposite force on the astronaut which is -6048 N
<h3>
What does Newton's third law say ?</h3>
The law state that in every action, there will be equal and opposite reaction.
Given that a rocket takes off from Earth's surface, accelerating straight up at 69.2 m/s2. We are to calculate the normal force (in N) acting on an astronaut of mass 87.4 kg, including his space suit.
Let us first calculate the force involved in the acceleration of the rocket by using the formula
F = ma
Where mass m = 87.4 kg, acceleration a = 69.2 m/s2
Substitute the two parameters into the formula
F = 87.4 x 69.2
F = 6048.08 N
According to the Newton's 3rd law, there will be equal and opposite force on the astronaut.
Therefore, the normal force acting on the astronaut is -6048 N approximately
Learn more about forces here: brainly.com/question/12970081
#SPJ1
A i think because it’s talking about covering ground, a faster car would cover more ground.
Answer:
It takes 266 seconds to melt the ice.
Explanation:
Given data
- Power of the microwave oven (P): 125 Watt
- Heat supplied to the ice (Q): 33,200 Joule
- Time for the melting (t): to be determined
In order to determine the time required to melt the ice, we can use the following expression.
P = Q/t
t = Q / P = 33,200 J/ 125 W = 266 s
It takes 266 seconds to melt the ice.
Answer: 7 kg bowling ball must move with a speed of 2.8 m/s so that it has the same kinetic energy.
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion.

m = mass of object
v= velocity of the object

b) for a 7 kg bowl to have kinetic energy of 27 Joules:



Thus 7 kg bowling ball must move with a speed of 2.8 m/s so that it has the same kinetic energy