Represent these consecutive numbers (assuming that they are all integers):
x
x+1
x+2
x+3
x+4
x+5
and so on
x+8
x+9 is the tenth number. x+9 = 10, so x = 9.
Think of it this way: there are 10 consecutive numbers, and the last one is 10.
Working backwards, we get the sequence 10, 9, ... 3, 2, 1.
The sum of such an arith sequence is equal to the count of the numbers times the average of the first and last terms:
sum here = 10(1+10)/2 = 5(11) = 55 (answer)
Answer:
MORE STUFF
Step-by-step explanation:
AD STUFF TO STUFF AND YOU GET MORE STUFF
Answer:
x=70+30-60
Step-by-step explanation:
Word to my mother
With the curve

parameterized by

with

, and given the vector field

the work done by

on a particle moving on along

is given by the line integral

where

The integral is then


N=1→an=a1 (first term)=16 (on the graph for n=1)→First term = 16
n=2→an=a2 (second term) = 4 (on the graph for n=2)→Second term = 4
ratio=(Second term)/(First term)=a2/a1=4/16
Simplifying the fraction dividing the numerator (4) by 4 and the denominator (16) by 4:
ratio=(4/4)/(16/4)→ratio=1/4
Answer: Option A. First term = 16, ratio = 1/4