Answer:
Explanation:
Since the roundabout is rotating with uniform velocity ,
input power = frictional power
frictional power = 2.5 kW
frictional torque x angular velocity = 2.5 kW
frictional torque x .47 = 2.5 kW
frictional torque = 2.5 / .47 kN .m
= 5.32 kN . m
= 5 kN.m
b )
When power is switched off , it will decelerate because of frictional torque .
Answer:
Force on front axle = 6392.85 N
Force on rear axle = 8616.45 N
Explanation:
As we know that the weight of the car is balanced by the normal force on the front wheel and rear wheels
Now we know that



now we know that distance between the axis is 2.70 m and centre of mass is 1.15 m behind front axle
so we can write torque balance about its center of mass


now from above equation

now we have

now the other force is given as

The answer is either C or D..
Answer:
Permanent magnetism (of the steel)
make me brainliestt :))
Answer:
The speed of the two cars after coupling is 0.46 m/s.
Explanation:
It is given that,
Mass of car 1, m₁ = 15,000 kg
Mass of car 2, m₂ = 50,000 kg
Speed of car 1, u₁ = 2 m/s
Initial speed of car 2, u₂ = 0
Let V is the speed of the two cars after coupling. It is the case of inelastic collision. Applying the conservation of momentum as :


V = 0.46 m/s
So, the speed of the two cars after coupling is 0.46 m/s. Hence, this is the required solution.