It would be D I believe! Depending on the angle of the mirror and distance positioned!
Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction, 
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force, 





Power, 

Answer:
-30°C
Explanation:
F-32/180 =C-0/100
or, -22-32/180=C/100
or, -54/180*100=C
or, -0.3*100=C
therefore, C= -30
-22°F = -30°C
PLEASE MARK ME AS BRAINLIEST!
Answer:
the law of motion
Explanation:
because the wheels are moving it means motion i am not sure which number law it is but I believe that it is 2nd but u should look it up to be safe