The continental drift is what caused plate tectonics
Answer:
Ice is the last major agent of weathering, erosion, and deposition.
Explanation:
Water often seeps into the cracks in rocks. When the temperature drops, the water in the cracks freeze and expand, causing the crack to widen. Eventually, the rock is broken into smaller pieces.
Answer:

=> The colour of this stone is usually a pale greenish blue, owing to the presence of iron impurities. Stones that are treated with heat look more blue than green. On the Mohs scale of hardness, aquamarine ranges between 7.5 and 8 making it a relatively hard gemstone.
=> The best way to identify a real aquamarine stone is by looking at its colour. In its natural form, they have a pale blue colour, which is similar to seawater. They may have a slight green or yellow tint as well. Naturally occurring gems have excellent clarity and transparency.
=> The hardness of the stone is another feature you can use to identify the stone. Aquamarine stones are hard and they don’t get scratches easily. However, they can easily scratch glass and other such surfaces. So, if you find visible scratches on the stone, rethink your decision to buy it.
=> Most faceted aquamarine stones are clean to the eye and clear of any inclusions. However, translucent and opaque aquamarine is also available. These are usually fashioned into cabochons or beads. In some cases, inclusions may appear as parallel tubes. Such stones can be crafted to show a cat’s eye. Stones with cat’s eye and star effect are rare and highly priced.
1.94 moles
I did 35/18.02 because 18.02 is the molar mass of water
Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs