The mass of ethanol present in the vapor is 8.8×10⁻²g. when liquid and vapor ethanol at equilibrium.
The volume of the bottle = 4.7 L
Mass of ethanol = 0.33 g
Temperature (T1) = -11 oC = 273-11 = 262 K
P1 = 6.65 torr
Now we will calculate the mole by applying the ideal gas equation:-
PV = nRT
Or, n = PV/RT
Where P is the pressure
T is the temperature
R is the gas constant = 0.0821 L atm mol-1K-1
V is the volume
Substituting the values of P, V, T, and R the mole of ethanol is calculated as:-
= 0.001913 mol C2H6
Conversion of the mole to gm
Molar mass of ethanol (M) = 46.07 g/mol
Mass of C2H6O =0.001913 mol C2H6O 46.07 g/mol = 0.088 = 8.8×10⁻²g.
Hence, the mass of ethanol present in the vapor is found to be 8.8×10⁻²g.
Learn more about mole here:-brainly.com/question/15374113
#SPJ4
Answer:
D. Burning a peice of wood
Explanation:
Because when you burn wood a chemical reaction happenes between the flames and the wood making the wood into ashes.
Hope this helps you :)
Biuret reagent will indicate the presence of protein in a given sample. It is also known as the Piotrowski's test. This reagent consists of copper (II) sulfate and sodium hydroxide. It detects peptide bonds by the reaction of the copper ions in an alkaline solution. The copper ions would form violet colored complexes when peptide is present in the solution. From this test, concentration can be calculated since the intensity of the color depends on the amount of peptide bonds and according to the Beer-Lambert law concentration and the absorption of light is proportional. The concentration is calculated by a spectrophotometric technique at a wavelength of 540 nm.
Answer:
2Al+ 6HNO3 ---- 3H2 + 2Al(NO3)3
Explanation:
Put coefficient a,b,c, and d for calculation:
a Al + b HNO3 = c H2 + d Al(NO3)3
for Al: a = d
for H: b = 2c
for N: b = 3d
for O: 3b = 9d
Suppose a=1, then d=1, b=3, c=3/2
multiply 2 to make all natural number, a=2, then b=6, c=3, d=2
Answer:
due to the bicarbonate of CaCO3