Answer:
Search by reactants (P 2O 5, H 2O) and by products (H 3PO 4)
H2O + P2O5 → H3PO4
H2O + HNO3 + P2O5 → H3PO4 + N2O5
Answer:
SiH4 is nonpolar and BBr3 is nonpolar and SiF4 is nonpolar.
Explanation:
SiH4 is a non-polar compound. Though the Si–H bonds are polar, as a result of different electronegativities of Si and H. However, as there are 4 electron repulsions around the central Si atom, the polar bonds are arranged symmetrically around the central atom having a tetrahedral shape hence they cancel out making the compound nonpolar.
SiF4 is a nonpolar molecule because the fluorine atoms are arranged symetrically around the central silicon atom in a tetrahedral molecule with all of the regions of negative charge cancelling each other out just like in SiH4.
The 3 bromine atoms all lie in the same plane thus the geometry of the compound will be trigonal planar. The BBr3 will be non polar because the three B-Br bonds will cancel out each others' dipole moment given that they are in the same plane.
Answer:
This is known as the coefficient factor
Explanation:The balanced equation makes it possible to convert information about one reactant or product to quantitative data about another element.
Conjugate base of Propanoic acid (
is propanoate where -COOH group gets converted to -CO
. The structure of conjugate base of Propanoic acid is shown in the diagram.
The
above which 90% of the compound will be in this conjugate base form can be determined using Henderson's equation as propanoic acid is weak acid and it can form buffer solution on reaction with strong base.
=
+ log
=4.9+log
=5.85
As 90% conjugate base is present, so propanoic acid present 10%.
It is more likely 9. pH 4 is acidic and pH 9 is basic, and as the pH of a substance gets closer to 0 or 14, the substance becomes more corrosive or reactive. As 4 is closer to 0 than 9 is to 14, there is a much higher chance the solution has a pH of 9, because pH 4 is less neutral and therefore more corrosive/reactive than pH 9.