Answer:
The procedure you will use in this exercise exploits the difference in acidity and solubility just described.
(a) you will dissolve your unknown in ethyl acetate (an organic solvent). All of the possible compounds are soluble in ethyl acetate.
(b) you will extract with sodium bicarbonate to remove any carboxylic acid that is present.
(c) you will extract with sodium hydroxide to remove any phenol that is present.
(d) you will acidify both of the resulting aqueous solutions to cause any compounds that were extracted to precipitate.
To find<span> the </span>valence electrons in an atom<span>, identify what group the element is in. An element in group 1A has 1 </span>valence electron<span>. For example, Li is in group 1A, so that means it has one </span>valence electron. If the element is in group 2A, then it has two valence electrons<span>.</span>
There are globular and open star clusters, but there are no binary, eclipsing, or wobbling ones.
Elephants are really cool
From the stoichiometry of the combustion reaction, we can see that 7.4 L of oxygen is consumed.
<h3>What is combustion?</h3>
Combustion is a reaction in which a substance is burnt in oxygen. The equation of the reaction is; C4H10O(l) + 6O2 (g) → 4CO2 (g) + 5H2O(l)
We can obtain the number of moles of CO2 from;
PV = nRT
n = 1.02 atm * 7.15 L/0.082 atm LK-1mol-1 * (125 + 273) K
n = 7.29 /32.6
n = 0.22 moles
If 6 moles of oxygen produces 4 moles of CO2
x moles of oxygen produces 0.22 moles of CO2
x = 0.33 moles
1 mole of oxygen occupies 22.4 L
0.33 moles of oxygen occupies 0.33 moles * 22.4 L/ 1 mole
= 7.4 L of oxygen
Learn more about stoichiometry: brainly.com/question/13110055
#SPJ1