Answer:
Cu(NO3)2(aq)+Pb(s) ⇌ Pb(NO3)2(aq)+Cu(s)
Explanation:
If we look at the both reactions closely, we will quickly discover that the reaction CuSO4(aq)+Pb(s) ⇌ PbSO4(s)+Cu(s) involves PbSO4.
The compound PbSO4 is insoluble in water and sinks to the bottom of the reaction vessel. When this occurs, the concentration of Pb^2+ becomes low. This will bring about a low voltage in the cell.
On the other hand, Pb(NO3)2 is soluble in water hence the cell voltage in this case is higher than the former.
Answer:
c. By itself, heme is not a good oxygen carrier. It must be part of a larger protein to prevent oxidation of the iron.
e. Both hemoglobin and myoglobin contain a prosthetic group called heme, which contains a central iron ( Fe ) (Fe) atom.
f. Hemoglobin is a heterotetramer, whereas myoglobin is a monomer. The heme prosthetic group is entirely buried within myoglobin.
Explanation:
The differences between hemoglobin and myoglobin are most important at the level of quaternary structure. Hemoglobin is a tetramer composed of two each of two types of closely related subunits, alpha and beta. Myoglobin is a monomer (so it doesn't have a quaternary structure at all). Myoglobin binds oxygen more tightly than does hemoglobin. This difference in binding energy reflects the movement of oxygen from the bloodstream to the cells, from hemoglobin to myoglobin.
Myoglobin binds oxygen
The binding of O 2 to myoglobin is a simple equilibrium reaction:
Answer:
Grey precipitate implies the presence of silver ions
Yellow precipitate implies the presence of lead II ions
Explanation:
Qualitative analysis provides us a quick method of identifying ions present in a sample by chemical reactions involving simple reagents. Precipitates having a unique colour is formed. The identity of ions in the sample is deduced from the colour of precipitate obtained when particular reagents are added.
In the question, a precipitate containing silver ions upon standing turn into grey colour. Similarly, lead II ions give a yellow precipitate.
Answer:
The correct answer is: Dynamic equilibrium in a chemical reaction is the condition in which the rate of the forward reaction equals the rate of the reverse reaction.
Explanation:
Dynamic equilibrium is a chemical equilibrium between froward reaction and backward or reverse reaction where rate of reaction going forwards is equal to the rate of reaction going backward (reverse).
Some other properties of dynamic equilibrium are:
- Chemical equilibrium are attained is closed system.
- The macroscopic remains constant like: volume, pressure, energy etc.
- The concentration of the reactants and products remain constant.They are not always equal.