Question:
A cork floats on the surface of an incompressible liquid in a container exposed to atmospheric pressure. The container is then sealed and the air above the liquid is evacuated. The cork:
A. sinks slightly
B. rises slightly
C. floats at the same height
D. bobs up and down about its old position
Answer:
The correct answer is C) floats at the same height
Explanation:
The liquid is incompressible because its density very high and leaves no room for further compaction whether or not there is atmospheric pressure. So when you put a cork on the liquid, pressure or no pressure, there is no displacement hence it floats on the same height regardless of the absence of air.
Cheers!
Answer:
CAN YOU PLEASE GIVE ME POINTS???
Explanation:
Answer:
The distance on the screen between the first-order bright fringes for each wavelength is 3.17 mm.
Explanation:
Given that,
Wavelength of red = 660 nm
Wavelength of blue = 470 nm
Separated d= 0.30 mm
Distance between screen and slits D= 5.0 m
We need to calculate the distance for red wavelength
Using formula for distance

Where, D = distance between screen and slits
d = separation of slits
Put the value into the formula


For blue wavelength,
Put the value into the formula again


We need to calculate the distance on the screen between the first-order bright fringes for each wavelength
Using formula for distance



Hence, The distance on the screen between the first-order bright fringes for each wavelength is 3.17 mm.
Answer:
Heat generated by the current = 1547.89 J
Explanation:
We have equation for heat energy H = mCΔT
Mass of copper = 0.221 kg
Specific heat of copper = 0.093 kcal/kgC° = 389.112 J/kgC°
ΔT = 38 - 20 = 18°C
Substituting in H = mCΔT
H = 0.221 x 389.112 x 18 = 1547.89 J
Heat generated by the current = 1547.89 J