30grams
Explanation:
If a reaction starts with 30grams then the reaction should end with 30grams.
This in conformity with the law of conservation of mass.
- The law states that "in an isolated system, mass is neither created nor destroyed during chemical transformation".
- Mass is the quantity of matter contained in a substance.
- In chemical reactions, the mass of reactants must always be the same with the mass of the product baring any loss.
- In an isolated system, there is no exchange of energy and mass.
- Chemical systems are usually treated as isolated systems in which mass is conserved.
Learn more:
Chemical laws brainly.com/question/5896850
#learnwithBrainly
Answer : Height, h = 20.4 m
Explanation :
It is given that,
Mass of an object, m = 500 g = 0.5 kg
Gravitational potential energy, PE = 100 J
The Gravitational potential energy is the energy which is possessed due to the height and gravity of an object. It is given as :
PE = m g h
where,
h is the height of the cliff.

h = 20.40 m
So, the height of the cliff is 20.4 m.
Voltage = Current (I) × Resistance (R)
V = 10 × 28.5 = 285v
My Answer: They contain a high diversity of organisms.
Hope I helped! :D
Answer:
Cart A
Explanation:
Momentum can be computed by finding the product of mass and velocity. To solve this, you can use the formula below to find the greatest momentum:
p = mv
where:
p = momentum (kgm/s) m = mass (kg) v = velocity (m/s)
Because carts are moving along with the weights, we need to consider the whole system. This means that you need to add in the masses and the mass of the cart.
<u>Cart A:</u>
m = 200kg + 0 kg = 200 kg
v = 4.8 m/s
p = 200kg x 4.8 m/s = 960 kg-m/s
<u>Cart B:</u>
m = 200kg + 20 kg = 220 kg
v = 4.0 m/s
p = 220kg x 4.0 m/s = 880 kg-m/s
<u>Cart C:</u>
m = 200kg + 40 kg = 240 kg
v = 3.8 m/s
p = 240kg x 3.8 m/s = 912 kg-m/s
<u>Cart D:</u>
m = 200kg + 60 kg = 260 kg
v = 3.5 m/s
p = 260kg x 3.5 m/s = 910 kg-m/s
As you can see, Cart A has the greatest momentum.