Answer:
0.12 mm ; 140.50 rad/m ; 628.32 rad/sec ; +
Explanation:
Given the wave equation of the form :
y(x, t) = ym sin(kx ± ωt)
Mas per unit length (u) = 5 g/cm = (5÷1000)kg / 0.01m) = 0.005kg/0.01m = 0.5kg/m
Tension, T = 10 N
Amplitude, A = 0.12 mm
Frequency, F = 100 Hz
Comparing with the general wave equation :
y = Asin(kx ± ωt)
A = amplitude = ym = 0.12 mm
2.) k = 2π / λ
Recall :
v = fλ
v = sqrt(T/u) = sqrt(10/0.5) = sqrt(20) = 4.472
λ = v/ f = 4.472 / 100 = 0.04472
Hence,
k = (2 * π) / 0.04472
k = 140.50 rad/m
3.) Angular frequency, ω
ω = 2πf = 2 * 3.14 * 100 = 628.32 rad/sec
4.) sign is +ve
Direction of wave propagation as given is in the negative x axis
Answer:
because thermometric liquid readily expands on heating or contracts on cooling even for a small difference in the temperature of the body.
Answer:
Physical science is the study of the inorganic world. That is, it does not study living things. (Those are studied in biological, or life, science.) The four main branches of physical science are astronomy, physics, chemistry, and the Earth sciences, which include meteorology and geology.
Explanation:
Explanation:
It is given that,
Speed of the ball, v = 10 m/s
Initial position of ball above ground, h = 20 m
(a) Let H is the maximum height reached by the ball. It can be calculated using the conservation of energy as :


h' = 5.1 m
The maximum height above ground,
H = 5.1 + 20
H = 25.1 meters
So, the maximum height reached by the ball is 25.1 meters.
(b) The ball's speed as it passes the window on its way down is same as the initial speed i.e. 10 m/s.
Hence, this is the required solution.
Answer:
12N
Explanation:
Suppose the string mass is negligible, the total mass of the 2 block system is 6 + 9 = 15 kg
So the acceleration of the system when subjected to 30N force is
a = F / M = 30 / 15 = 2 m/s2
So both blocks would have the same acceleration, however, the force acting on the 6kg block would have a magnitude of
f = am = 2 * 6 = 12N
This is the tension in the string between the blocks