If there's any point in a circuit where the current has a choice
of which branch to take, then you have a <em>parallel circuit</em>.
The answer will be 8 because kedks
Current = charge per second
2 Coulombs per second = 2 Amperes
Potential difference = (current)x(resistance) in volts.
That's (2 Amperes) x (2 ohms).
That's how to do it.
I think you can find the answer now.
<span>For a point mass the moment of inertia is just
the mass times the square of perpendicular distance to the rotation axis, I =
mr^2. That point mass relationship becomes the basis for all other moments of
inertia since any object can be built up from a collection of point masses. So the
I = (1.2 kg)(0.66m/2)^2 = 0.1307 kg m2</span>
Work = force x distance
You can see time doesn’t matter (if we were talking about power, which is the RATE at which work is performed, that would be a different story).
W = 2 x 5 = 10 foot-pounds of work
Foot-pounds are gross units. Better to work in SI units when you can!