Explanation:
Momentum is mass times speed.
p = mv
a) p = (1500 kg) (25.0 m/s) = 37,500 kg m/s
b) p = (40,000 kg) (1.00 m/s) = 40,000 kg m/s
The truck has more linear momentum.
Momentum in the y direction:
pᵧ = (1500 kg) (25.0 m/s) = 37,500 kg m/s
Momentum in the x direction:
pₓ = (1500 kg) (15.0 m/s) = 22,500 kg m/s
Total linear momentum:
p² = pₓ² + pᵧ²
p² = (22,500 kg m/s)² + (37,500 kg m/s)²
p = 43,700 kg m/s
The energy associated with an object's motion is called kinetic energy. ... This is also called thermal energy – the greater the thermal energy, the greater the kinetic energy of atomic motion, and vice versa.
<em>A simple metallic band model is proposed for the transition metal mono antimonides, by analogy to the transition metals.</em>
Answer:
C) 6 m/s
Explanation:
Given that
m₁=5000 kg
The initial velocity of 5000 kg car =u₁
m₂=10,000 kg
The initial velocity of 10000 kg car =u₂ = 0 m/s
After collision the final speed of the both car,v = 2 m/s
There is no any external force on the system that is why linear momentum will be conserved.
Linear momentum P = m v
m₁u₁ + m₂u₂ = (m₂ + m₁) v
5000 x u₁ + 10000 x 0 = (5000 + 10000) x 2
5000 x u₁ = 15000 x 2
5 x u₁ = 15 x 2
u₁ = 6 m/s
Therefore the answer is C.
C) 6 m/s
<span>Due that we already know the horizontal cross-sectional area of the ship, which is 2800 m2 and we are going to understand that value keeps constant for the whole 9.5 of height of the ship from the waterline till the new waterline after unloading, then we just need to calculate the volume as follows:
V = A * H , where V is volume, A is area and H is height
V= 2,800 * 9.5 = 26,600 m3
So this volum of 26,600 cubic meters is the volum of freshwater delivered in the island.</span>