1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lapatulllka [165]
2 years ago
8

A 0.00275 kg air‑inflated balloon is given an excess negative charge q1 =−3.50×10−8 C by rubbing it with a blanket. It is found

that a charged rod can be held above the balloon at a distance of d = 0.0640 m to make the balloon float.
1) In order for this to occur, what polarity of charge must the rod possess?
q2 is ___________

a) negative
b) proton
c) neutral
d) positive

2) How much charge, q2, does the rod have?

Assume the balloon and rod to be point charges. The Coulomb force constant is 1/(4o)8.99 x10 N m2/C2 and the acceleration due to gravity g-9.81 m/s2 O negative 42 is proton O neutral positive Number Tools x 102
Physics
1 answer:
kati45 [8]2 years ago
3 0

Answer:

1)  \rm q_2 is<u> positive.</u>

<u></u>

2) \rm q_2=4.56\times 10^{-10}\ C.

Explanation:

<h2><u>Part 1:</u></h2>

<u></u>

The charged rod is held above the balloon and the weight of the balloon acts in downwards direction. To balance the weight of the balloon, the force on the balloon due to the rod must be directed along the upwards direction, which is only possible when the rod exerts an attractive force on the balloon and the electrostatic force on the balloon due to the rod is attractive when the polarities of the charge on the two are different.

Thus, In order for this to occur, the polarity of charge on the rod must be positive, i.e., \rm q_2 is <u>positive.</u>

<u></u>

<h2><u>Part 2:</u></h2>

<u></u>

<u>Given:</u>

  • Mass of the balloon, m = 0.00275 kg.
  • Charge on the balloon, \rm q_1 = -3.50\times 10^{-8}\ C.
  • Distance between the rod and the balloon, d = 0.0640 m.
  • Acceleration due to gravity, \rm g = 9.81\ m/s^2.

In order to balloon to be float in air, the weight of the balloom must be balanced with the electrostatic force on the balloon due to rod.

Weight of the balloon, \rm W = mg = 0.00275\times 9.81=2.70\times 10^{-2}\ N.

The magnitude of the electrostatic force on the balloon due to the rod is given by

\rm F_e = \dfrac{1}{4\pi \epsilon_o}\dfrac{|q_1||q_2|}{d^2}.

\rm \dfrac{1}{4\pi \epsilon_o} is the Coulomb's constant.

For the elecric force and the weight to be balanced,

\rm F_e = W\\\dfrac{1}{4\pi \epsilon_o}\dfrac{|q_1||q_2|}{d^2}=W\\8.99\times 10^9\times \dfrac{3.50\times10^{-8}\times |q_2| }{0.0640^2}=2.70\times 10^{-2}\\|q_2| = \dfrac{2.70\times 10^{-2}\times 0.00640^2}{8.99\times 10^9\times 2.70\times 10^{-7}}=4.56\times 10^{-10}\ C.

You might be interested in
Discuss why the article says the fact that we’re in our universe complicates our understanding of the expansion of the universe.
MArishka [77]
<span>Because of our perception of the universe from inside the universe, we are unable to see how and towards what the universe is expanding. Also, our understanding of it is further complicated because we are moving as part of the expansion, thus distorting our perception of it.</span>
4 0
2 years ago
Read 2 more answers
An archer shoots an arrow with a mass of 45.0 grams from bow pulled
Sladkaya [172]

Answer:

The force the archer need to pull in order to achieve the height is approximately 101.8 N

Explanation:

By energy conservation principle, puling an elastic bow with a force, for a given distance, performs work which is converted to the potential energy of the arrow at height

The given parameters are;

The mass of the arrow, m = 45.0 grams = 0.045 kg

The distance the elastic bow is pulled, d = 65.0 cm = 0.65 m

The height at which the arrow is reaches, h = 150.0 meters

Let 'F', represent the force the archer need to pull in order to achieve the height

Work done, W = Force × Distance moved in the direction of the force

Therefore;

The work done in pulling the arrow, W = F × d

By energy conservation, we have;

The work done in pulling the arrow, W = The potential energy gained by the arrow, P.E.

W = P.E.

The potential energy gained by the arrow, P.E. = m·g·h

Where;

m = The mass of the arrow

g = The acceleration due to gravity = 9.8 m/s²

h = The height the arrow reaches

∴ by plugging in the values, P.E. = 0.045 kg ×9.8 m/s² × 150 m = 66.15 J

W = F × d = F × 0.065 m

Also, W = P.E. = 66.15 J

∴ W = F × 0.065 m = 66.15 J

F × 0.065 m = 66.15 J

F = 66.15 J/(0.65 m) = 1323/13 N ≈ 101.8 N

The force the archer need to pull in order to achieve the height, F ≈ 101.8 N.

3 0
2 years ago
When water changes into vapor this is called?
Scorpion4ik [409]

When water changes into vapor, it is called evaporation.  BONUS:  This is formed by the boiling point of water, which is 230°F (Fahrenheit) or 110°C (Celsius).

4 0
2 years ago
The radii of the sprocket assemblies and the wheel of the bicycle in the figure are:
Furkat [3]
To solve this task we have to make a proportion, but firstly we have to set up all the main points : so, the distance is  s=r(B), that has its <span>r=radius,B=angle in rad velocity v=ds/dt= w(r)
Do not forget about </span> w = angular speed in rad/s and w1 = 1 revolution/sec = 2Pi (rad/s)
Now we can go to proportion
v1=v2
w1*r1 = w2r2w2 = w1 * r1/r2 = 2w1 = 4Pi (rad/s)
w2 = w3 (which is the   angular velocity of the rear wheel) &#10;
SOLVING FOR A : v3 = w3 * r3 = 4pi * 14 (inch/s) = 14.66 ft/sec
v3 = 14.66 ft/sec(1 mile/5280 ft)( 3600 sec/h)= 9.99 or something about <span>10 mph --- SOLVING FOR B.
</span>I'm sure it helps!
7 0
2 years ago
A 65.0-kg runner has a speed of 5.20 m/s at one instant dur- ing a long-distance event. (a) What is the runner’s kinetic energy
vladimir2022 [97]

Answer:

a)KE=878.8 J

b)W=2636.4 J      

Explanation:

Given that

mass ,m = 65 kg

Initial speed ,u = 5.2 m/s

a)

We know that kinetic energy KE is given as follows

KE=\dfrac{1}{2}mu^2

m=mass

u=velocity

Now by putting the values in the above equation we get

KE=\dfrac{1}{2}\times 65\times 5.2^2\ J

KE=878.8 J

b)

We know that

Work done by all forces = Change in the kinetic energy

The final velocity , v= 2 u = 2 x 5.2 m/s

v= 10.4 m/s

W=\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2

Now by putting the values in the above equation we get

W=\dfrac{1}{2}\times 65\times 10.4^2-\dfrac{1}{2}\times 65\times 5.2^2\ J

W=2636.4 J

a)KE=878.8 J

b)W=2636.4 J

8 0
2 years ago
Other questions:
  • 5. Why should the electrons be placed separate from each other (why not together)?
    6·2 answers
  • The builders of the pyramids used a long ramp to lift 20000-kg (20.0-ton) blocks. If a block rose 0.840 m in height while travel
    11·1 answer
  • As motorists drive onto the acceleration lane, they must get up to the speed limit, _______, find a/an ________ and then _______
    10·1 answer
  • The atomic mass of an element whose atoms consist of seven protons, eight neutrons, and seven electrons is _____?
    6·2 answers
  • A tree on a hillside casts a shadow 215 ft down the hill. If the angle of inclination of the hillside is 22???? to the horizonta
    14·1 answer
  • Transverse waves travel with a speed of 20 m/s on a string under a tension 0f 6.00 N. What tension is required for a wave speed
    7·1 answer
  • A meterstick is initially standing vertically on the floor. If the meterstick falls over, with what angular velocity will it hit
    12·1 answer
  • a desktop computer and monitor together draw about 2 A of current they plug into a wall outlet that is 120 V what is the Resista
    11·1 answer
  • How do mathematical models help us learn about conditions inside the sun?
    5·1 answer
  • Remember to identify all your data, write the equation, and show your work.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!