It is conduction. Rhejrjrjejehrhrhvrbrgr
Answer:
410 m
Explanation:
Given:
v₀ = 20.5 m/s
a = 0 m/s²
t = 20 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (20.5 m/s) (20 s) + ½ (0 m/s²) (20 s)²
Δx = 410 m
Answer: The force constant k is 10600 kg/s^2
Step by step:
Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.
Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.
The total energy at the point h=2m is:

The total energy at the point h=0m is:

The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:

The question is whether the statement is true or false.
The answer if false.
Explanation:
It is exactly the opposite. The soccer ball will hit the ground with greater velocity.
Since the soccer ball is thrown upward, when it returns to the same heigth from which it was throwm it will have a velocity downward, which will make that the soocer ball reaches the ground at the bottom of the clif with greater velocity than the volleball.
The greater the velocity with which the soccer ball is thrown upward, the greater its velocity when reaches the same point from which it was thrown, and the greater the velocity with which it will hit the ground at the bottom of the clif.
1. e) None of the above is necessarily true.
2.d) Without knowing the mass of the boat and the sack, we cannot tell.