An elastic collision is one in which the system does not experience a net loss of kinetic energy as a result of the collision. In elastic collisions, momentum and kinetic energy are both conserved.
<h3>Explain about the Elastic Collision?</h3>
A collision between two bodies in physics is referred to as an elastic collision if their combined kinetic energy stays constant. There is no net conversion of kinetic energy into other forms, such as heat, noise, or potential energy, in an ideal, fully elastic collision
An example of an elastic collision is when two balls collide at a pool table. It is an elastic collision when you throw a ball on the ground and it bounces back into your hand because there is no net change in the kinetic energy.
If there is no kinetic energy lost in the impact, the collision is said to be perfectly elastic. A collision is considered to be inelastic if any of the kinetic energy is converted to another kind of energy during the collision.
To learn more about Elastic Collision refer to:
brainly.com/question/7694106
#SPJ4
a simple lifting machine consisting of a rope which unwinds from a wheel on to a cylindrical drum or shaft joined to the wheel to provide mechanical advantage. reeeeeeeeeeeeeeeeeeeeeeeeee
Answer: 25.38 m/s
Explanation:
We have a straight line where the car travels a total distance
, which is divided into two segments
:
(1)
Where 
On the other hand, we know speed is defined as:
(2)
Where
is the time, which can be isolated from (2):
(3)
Now, for the first segment
the car has a speed
, using equation (3):
(4)
(5)
(6) This is the time it takes to travel the first segment
For the second segment
the car has a speed
, hence:
(7)
(8)
(9) This is the time it takes to travel the secons segment
Having these values we can calculate the car's average speed
:
(10)
(11)
Finally: