1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
5

An ice cream maker has a refrigeration unit which can remove heat at 120 Js'. Liquid ice

Physics
1 answer:
Rom4ik [11]3 years ago
8 0

Answer:

The amount of heat energy that must be removed from the mixture to cool it to its freezing point, of -16°C is 45,360 J

Explanation:

The given parameters for the refrigeration unit and the ice cream are;

The power of the refrigeration unit = 120 J/s

The mass of the liquid ice cream, m = 0.6 kg

The initial temperature of the liquid ice cream, T₁ = 20°C

The freezing point temperature of the ice cream, T₂ = -16°C

The specific heat capacity of the ice cream, c = 2,100 J/kg⁻¹·°C⁻¹

The amount of heat energy that must be removed from the mixture to cool it to its freezing point, ΔQ, is given as follows;

ΔQ = m × c × ΔT

Where;

ΔT = T₁ - T₂

∴ ΔQ = m × c × (T₁ - T₂)

Therefore, by substituting the known values, we have;

ΔQ = 0.6 × 2,100 × (20 - (-16)) = 45,360

The amount of heat energy that must be removed from the mixture to cool it to its freezing point, of -16°C = ΔQ = 45,360 J.

You might be interested in
A projectile is launched horizontally from a 20-m tall edifice with a vox of 25 m/s. How long will it take for the projectile to
NISA [10]

Answer:

a) First let's analyze the vertical problem:

When the projectile is on the air, the only vertical force acting on it is the gravitational force, then the acceleration of the projectile is the gravitational acceleration, and we can write this as:

a(t) = -9.8m/s^2

To get the vertical velocity we need to integrate over time to get:

v(t) = (-9.8m/s^2)*t + v0

where v0 is the initial vertical velocity because the object is thrown horizontally, we do not have any initial vertical velocity, then v0 = 0m/s

v(t) = (-9.8m/s^2)*t

To get the vertical position equation we need to integrate over time again, to get:

p(t) = (1/2)*(-9.8m/s^2)*t^2 + p0

where p0 is the initial position, in this case is the height of the edifice, 20m

then:

p(t) = (-4.9m/s^2)*t^2+ 20m

The projectile will hit the ground when p(t) = 0m, then we need to solve:

(-4.9m/s^2)*t^2+ 20m = 0m

20m = (4.9m/s^2)*t^2

√(20m/ (4.9m/s^2)) = t = 2.02 seconds

The correct option is a.

b) The range will be the total horizontal distance traveled by the projectile, as we do not have any horizontal force, we know that the horizontal velocity is 25 m/s constant.

Now we can use the relationship:

distance = speed*time

We know that the projectile travels for 2.02 seconds, then the total distance that it travels is:

distance = 2.02s*25m/s = 50.5m

Here the correct option is a.

c) Again, the horizontal velocity never changes, is 25m/s constantly, then here the correct option is option b. 25m/s

d) Here we need to evaluate the velocity equation in t = 2.02 seconds, this is the velocity of the projectile when it hits the ground.

v(2.02s) =  (-9.8m/s^2)*2.02s = -19.796 m/s

The velocity is negative because it goes down, and it matches with option d, so I suppose that the correct option here is option d (because the sign depends on how you think the problem)

4 0
3 years ago
A 1 530-kg automobile has a wheel base (the distance between the axles) of 2.70 m. The automobile's center of mass is on the cen
NeTakaya

Answer:

Force on front axle = 6392.85 N

Force on rear axle = 8616.45 N

Explanation:

As we know that the weight of the car is balanced by the normal force on the front wheel and rear wheels

Now we know that

F_1 + F_2 = W

F_1 + F_2 = (1530\times 9.81)

F_1 + F_2 = 15009.3 N

now we know that distance between the axis is 2.70 m and centre of mass is 1.15 m behind front axle

so we can write torque balance about its center of mass

F_1(1.15) = F_2(2.70 - 1.15)

F_1 = 1.35 F_2

now from above equation

F_2 + 1.35F_2 = 15009.3

now we have

F_2 = 6392.85 N

now the other force is given as

F_1 = 8616.45 N

4 0
3 years ago
In volleyball, how is the server determined?
PtichkaEL [24]

the team rotates the serve

4 0
3 years ago
Read 2 more answers
un litro de un gas es calentado a presión constante desde 20°C hasta 60°C que volumen final ocupará dicho gas? ​
WINSTONCH [101]

Answer:

Final volume, V2 = 3 Litres

Explanation:

Given the following data;

Initial volume, V1 = 1 litre

Initial temperature, T1 = 20°C

Final temperature, T2 = 60°C

To find the final volume, we would use Charles' law;

Charles states that when the pressure of an ideal gas is kept constant, the volume of the gas is directly proportional to the absolute temperature of the gas.

Mathematically, Charles is given by;

V1/T1 = V2/T2

Making V2 as the subject formula, we have;

V1T2 = V2T1

V2 = (V1T2)/T1

Substituting into the formula, we have;

V2 = (1 * 60)/20

V2 = 60/20

Final volume, V2 = 3 Litres

4 0
3 years ago
Three resistors are wired in parallel with a battery. Two of the resistors have resistances of 38.7 Q/ and 89.5 Q. The current i
Lina20 [59]

Answer:

214.9 \Omega

Explanation:

The three resistors are connected in parallel: this means that the potential difference across each resistor is the same as the voltage of the battery. This can be calculated using the information about the 38.7 \Omega resistor: in fact, since we know its resistance and the current flowing through it (0.155 A), we can find the potential difference across this resistor, which is equal to the voltage of the battery:

V=IR=(0.155 A)(38.7 \Omega)=6.0 V

We also know the total current in the circuit, 0.250 A. This means that we can find the total resistance of the circuit, using Ohm's law:

R_{eq}=\frac{V}{I}=\frac{6.0 V}{0.250 A}=24 \Omega

So now we now the total resistance and the resistance of two of the 3 resistors; therefore, we can find the resistance of the 3rd resistor:

\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\\\frac{1}{R_3}=\frac{1}{R_{eq}}-\frac{1}{R_1}-\frac{1}{R_2}=\frac{1}{24 \Omega}-\frac{1}{38.7\Omega}-\frac{1}{89.5\Omega}=0.00465 \Omega^{-1}\\R_3=\frac{1}{0.00465 \Omega^{-1}}=214.9 \Omega

4 0
3 years ago
Other questions:
  • The property of matter that resists changes in motion is
    10·1 answer
  • A 15g bullet is fired horizontally into a 3kg block of wood suspended by a long cord. Assume that the bullet remains in the bloc
    11·1 answer
  • James yap run fast while dribbling the ball as he crosses the middle part of the basketball court he changes his phase to avoid
    13·1 answer
  • Eric has a mass of 60 kg. He is standing on a scale in an elevator that is accelerating downward at 1.7 m/s². What is the approx
    6·1 answer
  • A scientist is studying the light emitted by several celestial objects. He records the shifts in each object’s spectral lines (i
    8·1 answer
  • A boy rolls a toy car across a floor with a velocity of 3.21 m/s. How long does it take the car to travel a distance of 4.50 m?
    12·1 answer
  • If you had a rock with a volume of 237 ml and a density of 4.52 g/ml how much mass would it have?
    10·2 answers
  • 12. Energy from the breaking of atomic bonds in molecules (ex: C4 explosion)
    14·1 answer
  • The total charge a battery can supply is rated in mA⋅hmA⋅h, the product of the current (in mA) and the time (in h) that the batt
    9·1 answer
  • Diffraction of light is the __________ of light as it passes through the Edges of a barrier or a slit.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!