1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vedmedyk [2.9K]
2 years ago
10

I HAVE LOTS OF POINTS COMING FOR THE END OF ALL MY QUESTIONS SO PLEASE HELP OUT

Mathematics
2 answers:
Irina18 [472]2 years ago
7 0

Answer:

1/5

Step-by-step explanation:

I think you go to the number 1 on the bottom and you go up 5 and there's your answer?

Jobisdone [24]2 years ago
3 0

Answer:

im not sure i suck at those problems

Step-by-step explanation:

You might be interested in
*PLEASE ANSWER, DIFFICULT QUESTION, ASAP* An ice cream machine offers three flavors: vanilla, chocolate, and strawberry. Each fl
murzikaleks [220]
I think it’s 0.2 I am not sure if it’s right
5 0
3 years ago
2 - 4 • -5 help me.
gregori [183]

Answer:

22

Step-by-step explanation:

5 0
3 years ago
Answer? I don’t understand any of this
9966 [12]
Answer:\\ Let\: x\: be\: the\: miles\: they\: run \\ \Rightarrow We \: have \: an \: equation:0.55x + 35 + 20 = 0.65x + 45 \\ \Leftrightarrow 0.65x + 45 = 0.55x + 55 \\ \Leftrightarrow 0.1x = 10\Leftrightarrow x = 100 \\ \Rightarrow The \: rental \: costs \: of\: both \: companies \: are \: the \: same \: at \: 100 \: miles
7 0
3 years ago
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
How many natural numbers?<br> from 78 to 234<br> how many whole numbers <br> from 24 to 721
Vinil7 [7]

Answer:

<u>158 natural numbers from 78 to 234, and 699 whole numbers from 24 to 721.</u>

Step-by-step explanation:

Natural numbers are positive integers (whole numbers), so all numbers from the range of 78 to 234 would be included, including 78 and 234 itself. That is 158 natural numbers. Whole numbers are numbers without a fraction or decimal, they are integers. So all numbers from 24 to 721 would be included, as well as 24 and 721 itself. That is 699 whole numbers from 24 to 721. Hope this helps.

3 0
3 years ago
Read 2 more answers
Other questions:
  • Jack has $55 and Emily has $28. Jack is saving $4 per day, and Emily is saving $13 per day. After how many days will Jack and Em
    6·2 answers
  • If a data set has more extremely small data values, the distribution is said to be __________________.
    7·1 answer
  • Does this graph represent a function? Why or why not?
    11·1 answer
  • Which of the following inequalities is best represented by this graph?
    10·2 answers
  • On August 21, 2009, the World Health Organization announced its prediction that the number of new cases of H1N1 (swine flu) viru
    9·1 answer
  • Math questions part 2<br> pls help
    6·1 answer
  • Solve for all values of x by factoring.<br> x2 + 10x + 8 = x
    13·2 answers
  • Find the difference between (x + 5) and (2x+3)​
    15·1 answer
  • Tom used a photocopier to dilate the design for a monorail track system. The figure shows the design and its photocopy:
    15·2 answers
  • How much be the value of x in y_axix?​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!