Answer:
The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Explanation:
Water potential = Pressure potential + solute potential


We have :
C = 0.15 M, T = 273.15 K
i = 1
The water potential of a solution of 0.15 m sucrose= 
(At standard temperature)


The water potential of a solution of 0.15 M sucrose solution is -3.406 bar.
Answer: If homeostasis is disrupted, it must be controlled or a disease/disorder may result.
Explanation: What happens if there's disruption? Your body systems work together to maintain balance. If that balance is shifted or disrupted and homeostasis is not maintained, the results may not allow normal functioning of the organism.
Answer:
Neither arre correct
Explanation:
Neither Anya nor Braden are correct. This is because if you use 90 degrees, 180 degrees, or even 270 degrees you will not get the exact image, which means that the image will not be found by just a rotation because there will be a curve in the image. You can solve it if you can do 90 degree rotation and translation.
Explanation:
Pressure of a gas is the combined force with which the molecules bombard a unit area of the wall of the container.
1 atm = 760mmHg
= 760torr
= 101325Pa
= 101325Nm⁻²
1mmHg = 1torr
1Pa = 1Nm⁻²
101.325 kPa and 101,325 Pa are the same
1000Pa = 1kPa
101,325 Pa and 1 atm
1atm and 101.325 kPa