It is known that chemistry is a BIG part of our everyday lives. You can find chemistry in daily life in foods you eat, air you breathe, soap, your emotions and literally every object you can see or touch. For example, Chemistry explains how food changes as you cook it, how it rots, how to preserve food, how your body uses the food you eat, and how ingredients interact to make food.
Hope it helps! :)
The pH of the buffer is 6.1236.
Explanation:
The strength of any acid solution can be obtained by determining their pH. Even the buffer solution strength of the weak acid can be determined using pH. As the dissociation constant is given, we can determine the pKa value as the negative log of dissociation constant value.
![pKa=-log[H] = - log [ 5.66 * 10^{-7}]\\ \\pka = 7 - log (5.66)=7-0.753=6.247\\\\pka = 6.247](https://tex.z-dn.net/?f=pKa%3D-log%5BH%5D%20%3D%20-%20log%20%5B%205.66%20%2A%2010%5E%7B-7%7D%5D%5C%5C%20%5C%5Cpka%20%3D%207%20-%20log%20%285.66%29%3D7-0.753%3D6.247%5C%5C%5C%5Cpka%20%3D%206.247)
The pH of the buffer can be known as
![pH = pK_{a} + log[\frac{[A-]}{[HA]}}]](https://tex.z-dn.net/?f=pH%20%3D%20pK_%7Ba%7D%20%2B%20log%5B%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D%7D%5D)
The concentration of ![[A^{-}] = Moles of [A]/Total volume = 0.608/2 = 0.304 M\\](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20Moles%20of%20%5BA%5D%2FTotal%20volume%20%3D%200.608%2F2%20%3D%200.304%20M%5C%5C)
Similarly, the concentration of [HA] = 
Then the pH of the buffer will be
pH = 6.247 + log [ 0.304/0.404]

So, the pH of the buffer is 6.1236.
Answer:
(5.4 x 10³) x (1.2 x 10⁷) = 6.48 x 10¹⁰
With correct significant figures, the answer would be 6.5 x 10¹⁰.
Answer:
I got 3/8, hope this helps.
Explanation:
The answer is D. I did that and i got it right.