An object floats if it has low density or has less mass per unit volume. So, Icefloats on water because ICE is lessdenser than WATER. Most of the substances are more dense in their solid state, but water is different. This peculiarity is on account of the structure of ice.
I really hope this helped!!!! ❤
I think it’s Igneous rock
1. 12.992 L
2. 2.42 moles
3. 275.52 L
4. 567.844 g
<h3>Further explanation</h3>
Given
moles and volume at STP
Required
mass, volume and moles
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, Vm is 22.4 liters / mol.
1. 0.58 moles ammonia :
Volume = 0.58 moles x 22.4 L = 12.992 L
2. 77.5 grams of O₂ :
Moles = 77.5 grams x (1 mol/32 grams) = 2.42
3. 12.3 mole of Bromine gas :
Volume = 12.3 mole x (22.4 L/1 mole) = 275.52 L
4. 4.8 moles iron(II)chloride :
Mass = 4.48 moles x molar mass ( 126,751 g/mol) = 567.844 g
Answer:
I. Changing the pressure:
Increasing the pressure: the amount of H₂S(g) will increase.
Decreasing the pressure: the amount of H₂S(g) will decrease.
II. Changing the temperature:
Increasing the temperature: the amount of H₂S(g) will decrease.
Decreasing the temperature: the amount of H₂S(g) will increase.
III. Changing the H₂ concentration:
Increasing the H₂ concentration: the amount of H₂S(g) will increase.
Decreasing the H₂ concentration: the amount of H₂S(g) will decrease.
Explanation:
Le Châtelier's principle states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
I. Changing the pressure:
When there is an increase in pressure, the equilibrium will shift towards the side with fewer moles of gas of the reaction. And when there is a decrease in pressure, the equilibrium will shift towards the side with more moles of gas of the reaction.
For the reaction: CH₄(g) + 2H₂S(g) ⇄ CS₂(g) + 4H₂(g),
The reactants side (left) has 3.0 moles of gases and the products side (right) has 5.0 moles of gases.
Increasing the pressure: will shift the reaction to the side with lower moles of gas (left side), amount of H₂S(g) will increase.
Decreasing the pressure: will shift the reaction to the side with lower moles of gas (right side), amount of H₂S(g) will decrease.
II. Changing the temperature
The reaction is endothermic since the sign of ΔH is positive.
So the reaction can be represented as:
CH₄(g) + 2H₂S(g) + heat ⇄ CS₂(g) + 4H₂(g).
Increasing the temperature:
The T is a part of the reactants, increasing the T increases the amount of the reactants. So, the reaction will be shifted to the right to suppress the effect of increasing T and the amount of H₂S(g) will decrease.
Decreasing the temperature:
The T is a part of the reactants, increasing the T decreases the amount of the reactants. So, the reaction will be shifted to the left to suppress the effect of decreasing T and the amount of H₂S(g) will increase.
III. Changing the H₂ concentration:
H₂ is a part of the products.
Increasing the H₂ concentration:
H₂ is a part of the products, increasing H₂ increases the amount of the products. So, the reaction will be shifted to the left to suppress the effect of increasing H₂ and the amount of H₂S(g) will increase.
Decreasing the H₂ concentration:
H₂ is a part of the products, decreasing H₂ decreases the amount of the products. So, the reaction will be shifted to the right to suppress the effect of decreasing H₂ and the amount of H₂S(g) will decrease.
Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!