Whats the question ? all you said was she pumps up a soccer ball
Triprotic acid is a class of Arrhenius acids that are capable of donating three protons per molecule when dissociating in aqueous solutions. So the chemical reaction as described in the question, at the third equivalence point, can be show as: H3R + 3NaOH ⇒ Na3R + 3H2O, where R is the counter ion of the triprotic acid. Therefore, the ratio between the reacted acid and base at the third equivalence point is 1:3.
The moles of NaOH is 0.106M*0.0352L = 0.003731 mole. So the moles of H3R is 0.003731mole/3=0.001244mole.
The molar mass of the acid can be calculated: 0.307g/0.001244mole=247 g/mol.
Mole is base unit of substance. The number of particles in one mole is equal to 6.022 × 10²³. The number of particle in a mole is called as Avogadro's number.
The mole of substance is the amount of substance that contain elementary particles as the number of atoms. the symbol of mole is mol. it is the SI unit of amount of substance. The number particles are ion one mole of substances is 6.022 × 10²³. The number of particles in one mole of substance is called as Avogadro's number.
Thus, Mole is base unit of substance. The number of particles in one mole is equal to 6.022 × 10²³. The number of particle in a mole is called as Avogadro's number.
To learn more about moles here
brainly.com/question/26416088
#SPJ1
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ