Answer:
Empirical formula will be (NH₄)₃PO₄, which matches the molecular formula
Explanation:
This is the reaction:
NH₃ + H₃PO₄ → 28.2% N, 20.8% P, 8.1% H, 42.9% O
In 100 g of compound we have:
28.2 g N
20.8 g of P
8.1 g of H
42.9 g of O
Now we divide each between the molar mass:
28.2 g / 14 g/mol = 2.01 mol
20.8 g / 30.97 g/mol = 0.671 mol
8.1 g / 1 g/mol = 8.1 mol
42.9 g / 16 g/mol = 2.68 mol
And we divide again between the lowest value of moles
2.01 mol / 0.671 mol → 3
0.671 mol / 0.671 mol → 1
8.1 mol / 0.671 mol → 12
2.68 mol / 0.671 mol → 4
Molecular formula will be: N₃PH₁₂O₄ → (NH₄)₃PO₄
Empirical formula will be (NH₄)₃PO₄, which matches the molecular formula
It allowed him to realize that the mass of an atom is concentrated at its center because the atoms mostly went through the foil but some were deflected. He also realized that an atom probably wasn't just empty space and scattered electron and it had a positive center.
Earthquakes are created when tectonic plates rub, push, or pass each other. Tsunamis are made by earthquakes on the sea floor.
Answer:
The mass of radon that decompose = 63. 4 g
Explanation:
R.R = P.E/(2ᵇ/ⁿ)
Where R.R = radioactive remain, P.E = parent element, b = Time, n = half life.
Where P.E = 100 g , b = 5.55 days, n = 3.823 days.
∴ R.R = 100/
R.R = 100/
R.R = 100/2.73
R.R = 36.63 g.
The mass of radon that decompose = Initial mass of radon - Remaining mass of radon after radioactivity.
Mass of radon that decompose = 100 - 36.63
= 63.37 ≈ 63.4 g
The mass of radon that decompose = 63. 4 g