The field lines spread apart as we move away from the charge, and they point away from the charge
Explanation:
The electric field produced by a single-point positive charge is a radial field, whose strength is given by the equation

where
k is the Coulomb's constant
Q is the magnitude of the charge
r is the distance from the charge at which the field is calculated
There are two pieces of information given by the field lines shown in the graph:
- The spacing between the lines gives an indication of the strength of the field: the closer to each other they are, the stronger the field. In this case, as we move away from the charge, the spacing between the lines increases, and this means that the field becomes weaker (in fact, it follows an inverse square law,

- The direction of the lines gives the direction of the electric field, which points away from the central charge. This is because the direction of the electric field corresponds to the direction of the force that a positive test charge would feel when immersed in the electric field: in this case, if we place a positive test charge in this field, then it would get repelled away from the central charge (remember that the electric force between two positive charges is repulsive), and therefore, the direction of the electric field is away from the central charge.
Learn more about electric field:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
The answer is b increases in increase of mass because the heavier the object is the more gravitional pull it will have. For example, what will fall faster? A 1 pound object or a 10 pound obect.
It seems that you have missed the necessary options for us to answer this question so I had to look for it. Anyway, the answer to the given statement is FALSE. Pigments are NOT always made of natural materials. Pigments can either be man-made or the one that occurred naturally as what you see in our environment. Hope this helps.
Answer:
The heat flows into the gas during this two-step process is 120 cal.
Explanation:
Given that,
Number of moles = 3
Heat capacity at constant volume = 4.9 cal/mol.K
Heat capacity at constant pressure = 6.9 cal/mol.K
Initial temperature = 300 K
Final temperature = 320 K
We need to calculate the heat flow in to gas at constant pressure
Using formula of heat

Put the value into the formula


We need to calculate the heat flow in to gas at constant volume
Using formula of heat

Put the value into the formula


We need to calculate the heat flows into the gas during two steps
Using formula of total heat



Hence, The heat flows into the gas during this two-step process is 120 cal.
The circular lines you see on the chart are isobars, which join areas of the same barometric pressure.