Answer:
true b and c
Explanation:
n the electromechanical transitions of the atoms the relationship must be fulfilled
= R (1 / nf - 1 / no²)
where for the final state nf = 1 giving in the case of hydrogen the Lymma series whose smallest wavelength is lam = 122 nm with nf = 1 and there are a series of spectral lines for each value of n of the final state
in the case of sodium so well it has a transition from an excited state to the kiss state (bad)
Now let's review the different proposals
a) False. The electronic potential for sodium is much lower than for hydrognosia
b) True
c) True
d) true
Answer:
If you were traveling away from earth at speed 0.5c, you wouldn't notice any change in your heartbeat, you won't notice your mass, height and waistline change. This is because you are on the same frame of reference as the ship in spacetime and any measurement done from the ship will give normal readings from an observer on the ship.
For an observer on earth, your heartbeat will be seen to slowdown (because your time on the ship will be perceived to slow down to an
observer on earth). Also, your mass will be seen to increase, you height will also be seen to increase, and your waistline will be seen to decrease when viewed from earth.
No it is a chemical change
Hi there!
We can use the work-energy theorem to solve.
Recall that:

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

Now, we can define work:

Now, plug in the values:

Solve for theta:
