Answer:
2.49 * 10^(-4) m
Explanation:
Parameters given:
Frequency, f = 4.257 MHz = 4.257 * 10^6 Hz
Speed of sound in the body, v = 1.06 km/ = 1060 m/s
The speed of a wave is given as the product of its wavelength and frequency:
v = λf
Where λ = wavelength
This implies that:
λ = v/f
λ = (1060) / (4.257 * 10^6)
λ = 2.49 * 10^(-4) m
The wavelength of the sound in the body is 2.49 * 10^(-4) m.
Answer:
E) 6.5 A
Explanation:
Given that
L = 40 m H
C= 1.2 m F
Maximum charge on capacitor ,Q= 45 m C
The maximum current I given as
I = Q.ω
ω =angular frequency

By putting the values


ω = 144.33 rad⁻¹
Maximum current
I = 45 x 10⁻³ x 144.33 A
I= 6.49 A
I = 6.5 A
E) 6.5 A
The focal point of a concave mirror is halfway along the radius, therefore the radius would be 2•16= 32 cm
To solve this problem it is necessary to apply the concepts related to the Moment. The moment in terms of the Force and the time can be expressed as

F = Force

At the same time the moment can be expressed in terms of mass and velocity, mathematically it can be given as

Where
m = Mass
Change in velocity
Our values are given as

By equating the two equations we can find the Force,



Therefore, the net average force will be:

The negative symbol indicates that the direction of the force is upwards.
Answer:
Explanation:
W = 75 watts
V = 110 volts
Formula
W = V * I
Solution
75 = 110 * I Divide by 110
75 / 110 = I
I = 0.6818 Amperes