The star with apparent magnitude 2 is more brighter than 7.
To find the answer, we have to know about apparent magnitude.
<h3>What is apparent magnitude?</h3>
- 100 times as luminous as a star with an apparent brightness of 7 is a star with a magnitude of 2.
- The apparent magnitude of bigger stars is always smaller.
- The brightest star in the night sky is Sirius.
- The brightness of a star or other celestial object perceived from Earth is measured in apparent magnitude (m).
- The apparent magnitude of an object is determined by its inherent luminosity, its distance from Earth, and any light extinction brought on by interstellar dust in the path of the observer's line of sight.
Thus, we can conclude that, the star with apparent magnitude 2 is more brighter than 7.
Learn more about the apparent magnitude here:
brainly.com/question/350008
#SPJ4
The name carbohydrate means "watered carbon" or carbon with attached water molecules. Many carbohydrates have empirical formuli which would imply about equal numbers of carbon and water molecules. For example, the glucose formula C6H12O6 suggests six carbon atoms and six water molecules.
For this case, let's
assume that the pot spends exactly half of its time going up, and half going
down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take
the bottom of the window to be zero on a vertical axis pointing upward. All calculations
will be made in reference to this coordinate system. <span>
An initial condition has been supplied by the problem:
s=1.80m when t=0.245s
<span>This means that it takes the pot 0.245 seconds to travel
upward 1.8m. Knowing that the gravitational acceleration acts downward
constantly at 9.81m/s^2, and based on this information we can use the formula:
s=(v)(t)+(1/2)(a)(t^2)
to solve for v, the initial velocity of the pot as it enters
the cat's view through the window. Substituting and solving (note that
gravitational acceleration is negative since this is opposite our coordinate
orientation):
(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2
v=8.549m/s
<span>Now we know the initial velocity of the pot right when it
enters the view of the window. We know that at the apex of its flight, the
pot's velocity will be v=0, and using this piece of information we can use the
kinematic equation:
(v final)=(v initial)+(a)(t)
to solve for the time it will take for the pot to reach the
apex of its flight. Because (v final)=0, this equation will look like
0=(v)+(a)(t)
Substituting and solving for t:
0=(8.549m/s)+(-9.81m/s^2)(t)
t=0.8714s
<span>Using this information and the kinematic equation we can find
the total height of the pot’s flight:
s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>
s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2
s=3.725m<span>
This distance is measured from the bottom of the window, and
so we will need to subtract 1.80m from it to find the distance from the top of
the window:
3.725m – 1.8m=1.925m</span>
Answer:
<span>1.925m</span>