Answer:
vp = 0.94 m/s
Explanation
Formula
Vp = position/ time
position: Initial position - Final position
Position = 25 m - (-7 m) = 25 m + 7 m = 32 m
Then
Vp = 32 m / 34 seconds
Vp = 0.94 m/s
The portion of the flux leaves the curved surface of the cylinder is 60%.
<h3 /><h3>What are electrons?</h3>
The electrons are the spinning objects around the nucleus of the atom of the element in an orbit.
If a point charge is located at the center of a cylinder and the electric flux leaving one end of the cylinder is 20% of the total flux leaving the cylinder.
If 20% of the flux leave from one end, then another 20% will leave from another end.
So, the net flux through curved surface is
100 -20 -20 = 60%
Thus, the total flux leaves the curved surface of the cylinder is 60%
Learn more about electrons.
brainly.com/question/1255220
#SPJ1
To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 