The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
the weight of the balloon is .030 * 10 = 0.3 N
the weight of the gas of volume v is 0.54*10 N
The lifting force of a volume of v m³ of displaced air is 1.29v N
so, we need
1.29*10*v = 0.3 + 0.54*10*v
or
1.29v = 0.03+0.54v
Air and water have a good day
Answer:
The answer is option D. Stored in the chemical bonds.
Hope it helps............