1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Julli [10]
2 years ago
5

−2x−8y=10

Mathematics
1 answer:
Vilka [71]2 years ago
4 0

Answer:

Um hahahahahhahahahahahahhaha

You might be interested in
0.005 ___ 0.05<br>&lt;<br>&gt;<br>=<br><br>thanks :&gt;​
irinina [24]
  • <em>0</em><em>.</em><em>0</em><em>0</em><em>5</em><em> </em><em><u>></u></em><em><u> </u></em><em> </em><em>0</em><em>.</em><em>0</em><em>5</em>

<h2><em>hope </em><em>it</em><em> helps</em><em>!</em></h2>

4 0
2 years ago
Read 2 more answers
Gordon types 2,772 words in 42 minutes. Find the unit rate.
zubka84 [21]

Answer:

66 words in 1 minute

I hope this helps!

8 0
2 years ago
Find the output when the input x is 7
Anvisha [2.4K]
Not enough information
7 0
3 years ago
Plot the x- and y-intercepts to graph the equation. <br> y = 1/3x − 1
Trava [24]
If you have questions, feel free to ask

8 0
2 years ago
Read 2 more answers
Which of the following functions are homomorphisms?
Vikentia [17]
Part A:

Given f:Z \rightarrow Z, defined by f(x)=-x

f(x+y)=-(x+y)=-x-y \\  \\ f(x)+f(y)=-x+(-y)=-x-y

but

f(xy)=-xy \\  \\ f(x)\cdot f(y)=-x\cdot-y=xy

Since, f(xy) ≠ f(x)f(y)

Therefore, the function is not a homomorphism.



Part B:

Given f:Z_2 \rightarrow Z_2, defined by f(x)=-x

Note that in Z_2, -1 = 1 and f(0) = 0 and f(1) = -1 = 1, so we can also use the formular f(x)=x

f(x+y)=x+y \\  \\ f(x)+f(y)=x+y

and

f(xy)=xy \\  \\ f(x)\cdot f(y)=xy

Therefore, the function is a homomorphism.



Part C:

Given g:Q\rightarrow Q, defined by g(x)= \frac{1}{x^2+1}

g(x+y)= \frac{1}{(x+y)^2+1} = \frac{1}{x^2+2xy+y^2+1}  \\  \\ g(x)+g(y)= \frac{1}{x^2+1} + \frac{1}{y^2+1} = \frac{y^2+1+x^2+1}{(x^2+1)(y^2+1)} = \frac{x^2+y^2+2}{x^2y^2+x^2+y^2+1}

Since, f(x+y) ≠ f(x) + f(y), therefore, the function is not a homomorphism.



Part D:

Given h:R\rightarrow M(R), defined by h(a)=  \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)

h(a+b)= \left(\begin{array}{cc}-(a+b)&0\\a+b&0\end{array}\right)= \left(\begin{array}{cc}-a-b&0\\a+b&0\end{array}\right) \\  \\ h(a)+h(b)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)+ \left(\begin{array}{cc}-b&0\\b&0\end{array}\right)=\left(\begin{array}{cc}-a-b&0\\a+b&0\end{array}\right)

but

h(ab)= \left(\begin{array}{cc}-ab&0\\ab&0\end{array}\right) \\  \\ h(a)\cdot h(b)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)\cdot \left(\begin{array}{cc}-b&0\\b&0\end{array}\right)= \left(\begin{array}{cc}ab&0\\-ab&0\end{array}\right)

Since, h(ab) ≠ h(a)h(b), therefore, the funtion is not a homomorphism.



Part E:

Given f:Z_{12}\rightarrow Z_4, defined by \left([x_{12}]\right)=[x_4], where [u_n] denotes the lass of the integer u in Z_n.

Then, for any [a_{12}],[b_{12}]\in Z_{12}, we have

f\left([a_{12}]+[b_{12}]\right)=f\left([a+b]_{12}\right) \\  \\ =[a+b]_4=[a]_4+[b]_4=f\left([a]_{12}\right)+f\left([b]_{12}\right)

and

f\left([a_{12}][b_{12}]\right)=f\left([ab]_{12}\right) \\ \\ =[ab]_4=[a]_4[b]_4=f\left([a]_{12}\right)f\left([b]_{12}\right)

Therefore, the function is a homomorphism.
7 0
3 years ago
Other questions:
  • Help please..............​
    11·2 answers
  • Find the slope and the y-intercept of the line
    6·1 answer
  • Provided below are summary statistics for independent simple random samples from two populations. Preliminary data analyses indi
    6·1 answer
  • SOMEONE PLEASE HELP me a-e, step by step instructions I do not understand
    7·1 answer
  • 2.86 = ? Tenths + 6 hundredths
    12·1 answer
  • A letter from the word probability is chosen at random. find each probability
    14·1 answer
  • At the end of last year, the population of Alice's hometown
    10·1 answer
  • Find the measure of the missing angle.<br> 60°/a
    12·2 answers
  • Which equation is represented by the line
    9·1 answer
  • Cual es la ley que establece que la suma o producto de dos números reales no dependen del orden en que se presentan los factores
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!