I recently did this topic in science class - the answer is A ;)
(a) The speeds of the tips of both rotors; main rotor <u>178.3 m/s</u> and tail rotor <u>218.4 m/s</u>.
(b) The speed of the main rotor is <u>0.52</u> speed of sound, and the speed of the tail rotor is <u>0.64</u> speed of sound.
<h3>Linear speed of main motor and tail rotor</h3>
v = ωr
where;
- ω is the angular speed (rad/s)
- r is radius (m)
v(main rotor) = (444 rev/min x 2π rad x 1 min/60s) x (0.5 x 7.67 m)
v(main rotor) = 178.3 m/s
v(tail rotor) = (4,130 rev/min x 2π rad x 1 min/60s) x (0.5 x 1.01 m)
v(tail rotor) = 218.4 m/s
<h3>Speed of the rotors with respect to speed of sound</h3>
% speed (main motor) = 178.3/343 = 0.52 = 52 %
% speed (tail motor) = 218.4/343 = 0.64 = 64 %
Thus, the speed of the main rotor is 0.52 speed of sound, and the speed of the tail rotor is 0.64 speed of sound.
Learn more about linear speed here: brainly.com/question/15154527
#SPJ1
Answer:
Orbital Time Period is 24 years
Explanation:
This can be explained by the definition of time period.
Time period can be defined as the time taken by an object to complete one cycle, here, time taken to complete one revolution.
Also, we know that an extra solar planet which is also called as an exo planet is that planet which is outside our solar system and orbits any star other than our sun. The system in consideration is extra solar system with a single planet.
Therefore, the time taken by the parent star to move about its mass center is the orbital time period that is 24 years.
Answer:
Average speed = 1.2 m/s
Average velocity = 0.4 m/s
Explanation:
Average speed = total distance/total time
Average speed = (40 + 20)/(40 + 10)
Average speed = 60/50
Average speed = 1.2 m/s
Average velocity = displacement/time
Now, she ran 40 m south and ran 20 m back north which is in the direction of where she began the journey.
Thus;
Displacement = 40 - 20 = 20 m
Average velocity = 20/50 = 0.4 m/s
True.
The more the coils either at the Primary or Secondary coils, the higher the Primary or Secondary Emf. The lower the coils at the Primary or Secondary coils, the lower the EMF at the Primary or Secondary.
Hence there is a direct relationship.