Answer:
The electric field is 
Explanation:
From the question we are told that
The magnitude of magnetic field is 
The value for speed of light is 
Generally the magnitude of the electric field at point P is

substituting values


53....................................
Explanation:
Answer:
The object would weight 63 N on the Earth surface
Explanation:
We can use the general expression for the gravitational force between two objects to solve this problem, considering that in both cases, the mass of the Earth is the same. Notice as well that we know the gravitational force (weight) of the object at 3200 km from the Earth surface, which is (3200 + 6400 = 9600 km) from the center of the Earth:

Now, if the body is on the surface of the Earth, its weight (w) would be:

Now we can divide term by term the two equations above, to cancel out common factors and end up with a simple proportion:

Explanation:
A sound wave is often called a pressure wave because there are regions of high and low pressure established in them medium through which the sound wave travels. The regions of high pressure are known as <u>Compressions</u> and the regions of low pressure are known as <u>Rarefactions</u> . Sound waves are composed of compressions and rarefactions. Compressions are the parts where the molecules are congusted and pressed together. However in the rarefactions molecules are relax and have enough space for expansion. Sound waves are the logitudnal waves and always been defined as the motion of the medium particles parallel to the wave motion.
(a) The stone moves by uniform accelerated motion, with constant acceleration

directed downwards, and its initial vertical position at time t=0 is 750 m. So, the vertical position (in meters) at any time t can be written as

(b) The time the stone takes to reach the ground is the time at which the vertical position of the stone becomes zero: y(t)=0. So, we can write

from which we find the time t after which the stone reaches the ground:

(c) The velocity of the stone at time t can be written as

because it is an accelerated motion with initial speed zero. Substituting t=12.37 s, we find the final velocity of the stone:

(d) if the stone has an initial velocity of

, then its law of motion would be

and we can find the time it needs to reach the ground by requiring again y(t)=0:

which has two solutions: one is negative so we neglect it, while the second one is t=11.78 s, so this is the time after which the stone reaches the ground.