Answer:
A; C6H12O6 + 6O2
Explanation:
You can easily differentiate between the reactants and the products, as the reactants are on the left, while the products are on the right.
Answer:
1.9 × 10² g NaN₃
1.5 g/L
Explanation:
Step 1: Write the balanced decomposition equation
2 NaN₃(s) ⇒ 2 Na(s) + 3 N₂(g)
Step 2: Calculate the moles of N₂ formed
N₂ occupies a 80.0 L bag at 1.3 atm and 27 °C (300 K). We will calculate the moles of N₂ using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.3 atm × 80.0 L / (0.0821 atm.L/mol.K) × 300 K = 4.2 mol
We can also calculate the mass of nitrogen using the molar mass (M) 28.01 g/mol.
4.2 mol × 28.01 g/mol = 1.2 × 10² g
Step 3: Calculate the mass of NaN₃ needed to form 1.2 × 10² g of N₂
The mass ratio of NaN₃ to N₂ is 130.02:84.03.
1.2 × 10² g N₂ × 130.02 g NaN₃/84.03 g N₂ = 1.9 × 10² g NaN₃
Step 4: Calculate the density of N₂
We will use the following expression.
ρ = P × M / R × T
ρ = 1.3 atm × 28.01 g/mol / (0.0821 atm.L/mol.K) × 300 K = 1.5 g/L
Answer:
The air will reach a higher final temperature because its specific heat is lower.
Explanation:
Answer:
Explanation:
"Nature does this job through a process called the water cycle. Also known as hydrologic cycle, the water cycle is a phenomenon where water moves through the three phases (gas, liquid and solid) over the four spheres (atmosphere, lithosphere, hydrosphere and biosphere) and completes a full cycle. The water cycle has many effects: it regulates the temperature of the surroundings. It changes weather and creates rain. It helps in conversion of rocks to soil. It circulates important minerals through the spheres. It also creates the many geographical features present on earth like the ice caps of mountains, icebergs, the rivers and the valleys, lakes, and more. Hence it is quite important to understand and learn the processes of the water cycle."
-Water cycle a guide for students.