Answer:
Chemical reaction involves the breaking of bonds in the reactants and formation of bonds in the products. ... If a reaction is exothermic, more energy is released when the bonds of the products are formed than it takes to break the bonds of the reactants. This is the reason for temperature change during a reaction.
Explanation:
Here are just a few everyday demonstrations that temperature changes the rate of chemical reaction: Cookies bake faster at higher temperatures. Bread dough rises more quickly in a warm place than in a cool one.
Hey there!
Magnesium chlorate: Mg(ClO₃)₂
Find molar mass.
Mg: 1 x 24.305 = 24.305
Cl: 2 x 35.453 = 70.906
O: 6 x 16 = 96
------------------------------------
191.211 g/mol
We have 187.54 grams.
187.54 ÷ 191.211 = 0.9808
There are 0.9808 moles in 187.54 grams of magnesium chlorate.
Hope this helps!
Between atoms (one metall and one non metall) form an ionic bond(NaCl)
The Boiling Point of 2-methylpropane is approximately -11.7 °C, while, Boiling Point of <span>2-iodo-2-methylpropane is approximately 100 </span>°C.
As both compounds are Non-polar in nature, So there will be no dipole-dipole interactions between the molecules of said compounds.
The Interactions found in these compounds are London Dispersion Forces.
And among several factors at which London Dispersion Forces depends, one is the size of molecule.
Size of Molecule:
There is direct relation between size of molecule and London Dispersion forces. So, 2-iodo-2-methylpropane containing large atom (i.e. Iodine) experience greater interactions. So, due to greater interactions 2-iodo-2-methylpropane need more energy to separate from its partner molecules, Hence, high temperature is required to boil them.
Both figures are mixtures,
Figure II is a heterogenous mixture
Figure I is a homogenous mixture