Number 2 is correct answers
The iron (III) has 5 valence electrons and the complex is in a octahedral geometry. Since water as a ligand has a small splitting energy, the complex will be a high spin and all of the five electrons will be unpaired.
Answer:
ion-dipole
Explanation:
Let us remember that the potassium cation is an ion, a positive ion to be precise.
There is a dipole existing in the hydrogen cyanide molecule. The positive end of the dipole is on hydrogen while the negative end of the dipole is on the cyanide moiety.
The only possible interaction between the potassium cation and the hydrogen cyanide is an ion dipole interaction. The cation interacts with the cyanide moiety having a partial negative charge in the molecule.
(57.0 g B2O3 / (69.6202 g B2O3/mol) x (4mol BCI3 / 2 mol B2O3) = 1.64 mol BC13
(44.7 g C12) / (70.9064 g C12/mol) x (4mol BCI3 / 6mol C12) = 0.42027 mol BC13
(68.8 g C) / (12.01078 G C/mol) x (4mol BCI3 / 3 mol C) = 7.63 mol BCI3
C12 is the limiting reactant.
(0.42027 mol BCI3) X (117 . 170 g BCI3/mol) = 49.2 g BCI3 in theory.