Answer:
Le Chatelier's principle can be applied in explaining the results
Explanation:
According to Le Chatelier's principle, when a constraint such as a change in concentration in this case is imposed on a chemical system in equilibrium, the system will adjust itself in such a way as to annul the constraint imposed.
Hence, when the color of the solution was more like that of the control, the reaction would shift towards the left. Similarly, when the color was more like it was towards the reactant, the reaction would shift towards the right.
If we were to prepare calcium oxalate, we should prepare it in a base solution. This is because when the base was added to calcium oxalate, it did not form any precipitate but when an acid was added to the calcium oxalate, it formed a precipitate.
Answer:
c. 20.0332 g to 20,0 g
Explanation:
A significant figure is each of the digits of a number that are used to express it to the required degree of accuracy, starting from the first non-zero digit, with the exception of the trailing zeros.
<em>Which of the following examples illustrates a number that is correctly rounded to three significant figures?
</em>
a. 109 526 g to 109 500 g. NO. The rounded number has 4 significant figures: 109 500.
b. 0.03954 g to 0.040 g. NO. The rounded number has 2 significant figures: 0.040.
c. 20.0332 g to 20.0 g. YES. The rounded number has 3 significant figures: 20.0.
d. 04.05438 g to 4.054 g. NO. The rounded number has 4 significant figures: 4.054.
e. 103.692 g to 103.7g. NO. The rounded number has 4 significant figures: 103.7.
The question above is incomplete, the full question is given below:
What additional test would be needed to establish the exact position of hydrogen in the activity series of the following elements: magnesium, zinc, lead, copper and silver.
ANSWER
The position of hydrogen on a reactivity series can be determined by its ability to displace oxygen from the oxide of the metal concerned. If hydrogen is more reactive than a metal, it will displace oxygen from the metal oxide and reduce the metal oxide to its metal. If the metal is more reactive than hydrogen, hydrogen will not be able to reduce the metal oxide to its metal.
Answer:
In oxidation reduction reactions, one species gets reduced by taking on electron(s) and another species gets oxidized by losing electrons. They also flow by a wire
Explanation: