First, we need to get the molar mass of:
KClO3 = 39.1 + 35.5 + 3*16 = 122.6 g/mol
KCl =39.1 + 35.5 = 74.6 g/mol
O2 = 16*2 = 32 g/mol
From the given equation we can see that:
every 2 moles of KClO3 gives 3 moles of O2
when mass = moles * molar mass
∴ the mass of KClO3 = (2mol of KClO3*122.6g/mol) = 245.2 g
and the mass of O2 then = 3 mol * 32g/mol = 96 g
so, 245.2 g of KClO3 gives 96 g of O2
A) 2.72 g of KClO3:
when 245.2 KClO3 gives → 96 g O2
2.72 g KClO3 gives → X
X = 2.72 g KClO3 * 96 g O2/245.2 KClO3
= 1.06 g of O2
B) 0.361 g KClO3:
when 245.2 g KClO3 gives → 96 g O2
0.361 g KClO3 gives → X
∴ X = 0.361g KClO3 * 96 g / 245.2 g
= 0.141 g of O2
C) 83.6 Kg KClO3:
when 245.2 g KClO3 gives → 96 g O2
83.6 Kg KClO3 gives → X
∴X = 83.6 Kg* 96 g O2 /245.2 g KClO3
= 32.7 Kg of O2
D) 22.4 mg of KClO3:
when 245.2 g KClO3 gives → 96 g O2
22.4 mg KClO3 gives → X
∴X = 22.4 mg * 96 g O2 / 245.2 g KClO3
= 8.8 mg of O2
Answer:
National fire protection Association
Explanation:
the nfpa is a global self funded nonprofit orgnazation establised in 1896 devoted to eliminating death injury protery loss and ecomomic loss due to fire and electrical hazards
6.022×10^23 should be correct. Are there any options to choose from?
<u>Avogadros number</u>
X it by the molar mass of tungsten
Answer:
B) The term "inert" was dropped because it no longer described all the group 8A elements.
Explanation:
Inert elements in chemistry simply refers to elements that are chemically inactive and are not expected to form any compounds. this is the general belief for the group 8 elements as they all have complete duplet/octet configurations (and ideally, they ought to be very stable with no tendency to form compounds by participating in the loss and gain of electrons). However the discovery of compounds like xenon tetrafluoride (XeF4) proved this to be wrong.
Again, the reason the term - inert gses was droppedis beacause this term is not strictly accurate because several of them do take part in chemical reactions.
After dropping the term - Inert gases, they are now referred to as noble gases.