Answer:
I think its the first one. unless there is more to the question
Explanation:
The given data is as follows.
Heat transfer coefficient (h) = 12
Plate temperature (
) =
= 303 K
Steady state temperature (
) = ?
Hence, formula applied for steady state is as follows.
= 
Putting the given values into the above formula as follows.
= 
= ![5.67 \times 10^{-8} \times [(30 + 273)^{4} - T^{4}_{2}]](https://tex.z-dn.net/?f=5.67%20%5Ctimes%2010%5E%7B-8%7D%20%5Ctimes%20%5B%2830%20%2B%20273%29%5E%7B4%7D%20-%20T%5E%7B4%7D_%7B2%7D%5D)
= 282.66 K
= (282.66 -273)
= 9.66
Thus, we can conclude that the steady state temperature will be 9.66
.
A material will change from one state or phase to another at specific combinations of temperature and surrounding pressure. Typically, the pressure is atmospheric pressure, so temperature is the determining factor to the change in state in those cases.
Names such as boiling and freezing are given to the various changes in states of matter. The temperature of a material will increase until it reaches the point where the change takes place. It will stay at that temperature until that change is completed.
A) C2H6O1
To find the emperical formula, divide each mole value by the smallest
For carbon, 0.013/0.0065 = 2
For hydrogen, 0.038/0.0065= 6
For oxygen, 0.0065/0.0065= 1
Emperical formula = C2H6O1
<h2>Answer : By weighing the costs and benefits of an environmental issue
</h2><h3>
Explanation :</h3>
The law makers usually conduct many studies before a law is imposed. They try to explore many other options available to the current environmental issue and then come to a conclusion to make a law.
They also weigh the cost aspect along with the benefit of the ongoing environmental issue. They try to come up with something which appears to be cost effective and result bearing.