There are at least two forces on it, and there could be more.
Vertical forces:
-- gravity, directed downward
-- buoyant force, directed upward
These two forces must be exactly equal, so that the net
vertical force on the raft is zero. Otherwise, it would be
accelerating either up or down.
Horizontal forces:
We know that the net horizontal force on the raft is zero.
Otherwise, it would be accelerating horizontally.
But we don't know if there are actually no horizontal forces
at all, or a balanced group of horizontal forces, that add up
to a net force of zero.
Answer:



<h3>therefore , option (b) is correct!!</h3>
hope helpful~
The magnitude of the magnetic force per unit length on the top wire is
2×10⁻⁵ N/m
<h3>How can we calculate the magnitude of the magnetic force per unit length on the top wire ?</h3>
To calculate the magnitude of the magnetic force per unit length on the top wire, we are using the formula
F= 
Here we are given,
= magnetic permeability
= 4
×10⁻⁷ H m⁻¹
If= 12 A
d= distance from each wire to point.
=0.12m
Now we put the known values in the above equation, we get
F= 
Or, F = 
Or, F= 2×10⁻⁵ N/m.
From the above calculation, we can conclude that the magnitude of the magnetic force per unit length on the top wire is 2×10⁻⁵ N/m.
Learn more about magnetic force:
brainly.com/question/2279150
#SPJ4
The ideal spring equation is
Stretch = K times Force .
This says that the stretch is directly proportional to the force.
In simple English, that means that if you double the force, then
you double the stretch, and if you multiply the force by π or
any other number, you multiply the stretch by the same number.
So you can always write a proportion for a spring:
Stretch₁ / Force₁ = Stretch₂ / Force₂ .
Part A:
In Part-A of this question, the force is increased to (2.5 / 2.0) = 1.25 times .
So the stretch is also increased to 1.25 times .
(1.25) x (6.1 cm) = 7.625 cm .
Answer:
to find the length just divide 7.50 and . 298