<span>On what:
f (is the focal length of the lens) = ?
p (is the distance from the object to the lens) =15.8 cm
p' (is the distance from the image to the spherical lens) = 4.2 cm
</span><span>Using the Gaussian equation, to know where the object is situated (distance from the point).
</span>




Product of extremes equals product of means:



Answer:
v_average = 15 m / s
Explanation:
The average speed can be found in two ways,
* taking the distance traveled and divide it by the time spent
* taking the velocities in each time interval and then finding the weighted average by the time fraction
v_average = 1 / t_total ∑
vi ti
Let's apply this last equation
Total time is
t = t₁ + t₂
t = 10 + 10 = 20 min
v_average = 10/20 10 + 10/20 20
v_average = 10/2 + 20/2
v_average = 15 m / s
A, something to remember is that if the numbers are even the answer too will be even. Every time hope this helps :>
Answer:
d ) is the answer.
Explanation:
Let M be the mass and R be the radius of each of ball , hoop and disc.
kinetic energy of sphere - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of sphere - 1/2 MV² + 1/2 x 2/5 MR² ω²
= 1/2 MV² + 1/5 MR² ω²
MV² ( 1/2 + 1/5 )
= .7 MV²
kinetic energy of Disk - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of Disk - 1/2 MV² + 1/2 x 1/2 MR² ω²
= 1/2 MV² + 1/4 MR² ω²
MV² ( 1/2 + 1/4 )
= .75 MV²
kinetic energy of Hoop - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of hoop - 1/2 MV² + 1/2 MR² ω²
= 1/2 MV² + 1/2 MR² ω²
MV² ( 1/2 + 1/2 )
= MV²
Kinetic energy is largest in case of hoop and least in case of sphere . So hoop will go up to the highest point and sphere will go to a height which will be least among the three.