Answer:
The tension is 75.22 Newtons
Explanation:
The velocity of a wave on a rope is:
(1)
With T the tension, L the length of the string and M its mass.
Another more general expression for the velocity of a wave is the product of the wavelength (λ) and the frequency (f) of the wave:
(2)
We can equate expression (1) and (2):
=
Solving for T
(3)
For this expression we already know M, f, and L. And indirectly we already know λ too. On a string fixed at its extremes we have standing waves ant the equation of the wavelength in function the number of the harmonic
is:

It's is important to note that in our case L the length of the string is different from l the distance between the pin and fret to produce a Concert A, so for the first harmonic:

We can now find T on (3) using all the values we have:


Answer:
Visible Light
wavelength = 4000 - 7000 Angstroms = 400 - 700 milli-microns
1 A unit = 10^-10 m
1 mμ = 10^-9 m
Answer:
Magnitude of Vector = 79.3
Explanation:
When a vector is resolved into its rectangular components, it forms two vector components. These components are named as x-component and y-component, they are calculated by the following formulae:
x-component of vector = (Magnitude of Vector)(Cos θ)
y-component of vector = (Magnitude of Vector)(Sin θ)
where,
θ = angle of the vector with x-axis = 27°
Therefore, using the values in the equation of y-component, we get:
36 = (Magnitude of Vector)(Sin 27°)
Magnitude of Vector = 36/Sin 27°
<u>Magnitude of Vector = 79.3</u>
Sky diving involves free fall under gravity along with the drag due to air molecules pushing against the body slowing the rate of fall of a body. This is actually a significant amount of force. The drag force depends on the contact surface area and weight of the body. More the surface area in contact, more would be the drag. The sitting position of the skydiver would experience less drag than the chest down position. This is because of the less contact surface area of the body with the air molecules while in the former case. Since no two persons have identical body shape and weight, the rate of fall can be made nearly equal but not exactly equal. This is would be possible when they are having same body position.