To solve this problem it is necessary to apply the concepts related to optical magnification (is the process of enlarging the apparent size, not physical size, of something.). Specifically the angular magnification of an optical telescope is given by

Where,
Focal length of the objective lens in a refractor
Focal length of the eyepiece
Our values are given as
71cm
2.1cm
Replacing we have



Therefore the magnification of this astronomical telescope is -33.81
Answer:
7.2V
Explanation:
Find the equivalent resistance:
Req = 10 ohms + 15 ohms = 25 ohms
Use ohm's law to find the current:
V = IR
12V = I(25 ohms)
I = .48 amps
Multiple the current with the value of R2 to get the voltage drop:
.48amps x 15 ohms = 7.2V
Since we are given the density and volume, then perhaps we can determine the amount in terms of the mass. All we have to do is find the volume in terms of cm³ so that it will cancel out with the cm³ in the density. The conversion is 1 ft = 30.48 cm. The solution is as follows:
V = (14 ft)(15 ft)(8 ft)(30.48 cm/1 ft)³ = 0.0593 cm³
The mass is equal to:
Mass = (0.00118g/cm³)(0.0593 cm³)
Mass = 7 grams of HCN
At a point near the rim of the disk, it will have a<span> non-zero radial acceleration and a zero tangential acceleration. Also known as centripetal acceleration, radial acceleration takes place along the radius of the disk. On the other hand, the tangential acceleration is along the path of disk's motion.</span>
Answer
correct answer is 3.10
Explanation:
in this question we have to multiply two numbers 1.003 and 3.09.
1.003 has 4 significant digits and 3.09 has 3 significant digits so answer must have 3 significant digits.

Hope it will help you