Answer:
200 J
Explanation:
Work = Force × Distance
Work = (20 N)(10 m) = 200 N·m = 200 J
200 joules of work are done by a force of 20 N over a distance of 10 m.
2nd one I believe! If I’m wrong sorry
Answer:
c, About the same for both balls.
Explanation:
If no air resistance is present, the rate of descent depends only on how far the object has fallen, no matter how heavy the object is. This means that two objects will reach the ground at the same time if they are dropped simultaneously from the same height.
Answer:
4.80 m
Explanation:
We are given the mass of the high jumper, its initial velocity, and the acceleration of gravity. We are trying to find the vertical displacement of the high jumper.
Let's set the upwards direction to be positive and the downwards direction to be negative.
List out the relevant known variables.
- v₀ = 9.7 m/s
- a = -9.8 m/s²
- Δx = ?
We still need one more variable in order to use the constant acceleration equations. Since we are trying to find the max height of the jumper, we can use the fact that at the top of its trajectory, its final velocity will be 0 m/s.
4. v = 0 m/s
Using these four variables, let's find the constant acceleration equation that contains these variables:
Substitute the known values into the equation and solve for Δx.
- (0)² = (9.7)² + 2(-9.8)Δx
- 0 = 94.09 + (-19.6)Δx
- -94.09 = -19.6Δx
- Δx = 4.80
The high jumper can jump to a max height of 4.80 m.
C. inertia. the man is sent flying off the bus because of his weight and the sudden stop of the bus. this effect is called inertia. an example of gravity would be throwing an apple up and having it come to the ground. an example of weight would be putting a man and an elephant on a scale and having the elephant come down while the man goes up.