Coulomb's law mathematically is:
F = kQ₁Q₂/r²
we integrate this with respect to distance to obtain the expression for energy:
E = kQ₁Q₂/r; where k is the Coulomb's constant = 9 x 10⁹; Q are the charges, r is the seperation
Charge on proton = charge on electron = 1.6 x 10⁻¹⁹ C
E = (9 x 10⁹ x 1.6 x 10⁻¹⁹ x 1.6 x 10⁻¹⁹) / (185 x 10⁻¹²)
E = 1.24 x 10⁻¹⁸ Joules per proton/electron pair
Number of pairs in one mole = 6.02 x 10²³
Energy = 6.02 x 10²³ x 1.24 x 10⁻¹⁸
= 746.5 kJ
Answer:
Q = 768.47 J
Explanation:
Given that,
Mass of the metal, m = 25 g
Initial temperature, T₁ = 21.0 ºC
Final temperature, T₂ = 80.0 ºC
The specific heat of the metal is 0.521 J/gºC.
We know that the heat released due to the change in temperature is given by :

Hence, 768.47 J of heat energy will be needed.
Answer:
i know you think that they are just related because kg has kilo but they are related because
Explanation:
1000g makes 1 g.You see how much there is a difference in the solution because how is one=one thousand,well that is all i can help you from here.bye panta