Answer:
75 mg
Explanation:
We can write the extraction formula as
x = m/[1 + (1/K)(Vaq/Vo)], where
x = mass extracted
m = total mass of solute
K = distribution coefficient
Vo = volume of organic layer
Vaq = volume of aqueous layer
Data:
m = 75 mg
K = 1.8
Vo = 0.90 mL
Vaq = 1.00 mL
Calculations:
For each extraction,
1 + (1/K)(Vaq/Vo) = 1 + (1/1.8)(1.00/0.90) = 1 + 0.62 = 1.62
x = m/1.62 = 0.618m
So, 61.8 % of the solute is extracted in each step.
In other words, 38.2 % of the solute remains.
Let r = the amount remaining after n extractions. Then
r = m(0.382)^n.
If n = 7,
r = 75(0.382)^7 = 75 × 0.001 18 = 0.088 mg
m = 75 - 0.088 = 75 mg
After seven extractions, 75 mg (99.999 %) of the solute will be extracted.
Answer:
Kinetic energy to potential energy.
Explanation:
Science
The atomic number tells the number of protons.
The answer to this question would be: the anion uptake will be decreased
If proton pump function is decreased, that means the amount of proton that goes outside the cell will be decreased. It will cause the anion uptake decreased too because some anion needs to go inside cells by co transporting with the proton.
Answer is: solution of electrolyte will have lower freezing point than solution of nonelectrolyte.
This is because salt solution has more particles in of sodium chloride (sodium and chlorine ions) than in same concentration of glucose. Electrolytes better separates into particles in water because of their ionic bond.<span>
</span>