Yes , increased tension suggests increased molecular attraction between the molecules of the ropes which affect the increase in the speed of wave.
A fuse is an electrical safety device which should not blow, which should overheat and melts if current is too high. Its placed in the live wire before the switch. This prevents overheating and catching fire. A fuse have a specific current value for example - 3000 amps. So when choosing a suitable fuse you must use the above minimum value but less than maximum value. For example in a circuit there is 1000W flowing, you should choose more than 1000 amps fuse not less or else, it will melt.
Answer:
B = 9.16 10⁻² T
Explanation:
The speed selector is a configuration where the electric and magnetic force has the opposite direction, which for a specific speed cancel
q v B = q E
v = E / B
B = E / v
Let's calculate
B = 4.4 10⁵ / 4.8 10⁶
B = 9.16 10⁻² T
Answer:
The value of the inductance is 1.364 mH.
Explanation:
Given;
amplitude current, I₀ = 200 mA = 0.2 A
amplitude voltage, V₀ = 2.4 V
frequency of the wave, f = 1400 Hz
The inductive reactance is calculated;

The inductive reactance is calculated as;

where;
L is the inductance

Therefore, the value of the inductance is 1.364 mH.
<span>4.5 m/s
This is an exercise in centripetal force. The formula is
F = mv^2/r
where
m = mass
v = velocity
r = radius
Now to add a little extra twist to the fun, we're swinging in a vertical plane so gravity comes into effect. At the bottom of the swing, the force experienced is the F above plus the acceleration due to gravity, and at the top of the swing, the force experienced is the F above minus the acceleration due to gravity. I will assume you're capable of changing the velocity of the ball quickly so you don't break the string at the bottom of the loop.
Let's determine the force we get from gravity.
0.34 kg * 9.8 m/s^2 = 3.332 kg m/s^2 = 3.332 N
Since we're getting some help from gravity, the force that will break the string is 9.9 N + 3.332 N = 13.232 N
Plug known values into formula.
F = mv^2/r
13.232 kg m/s^2 = 0.34 kg V^2 / 0.52 m
6.88064 kg m^2/s^2 = 0.34 kg V^2
20.23717647 m^2/s^2 = V^2
4.498574938 m/s = V
Rounding to 2 significant figures gives 4.5 m/s
The actual obtainable velocity is likely to be much lower. You may handle 13.232 N at the top of the swing where gravity is helping to keep you from breaking the string, but at the bottom of the swing, you can only handle 6.568 N where gravity is working against you, making the string easier to break.</span>