<u>Answer:</u> The pressure that must be applied to the apparatus is 0.239 atm
<u>Explanation:</u>
To calculate the osmotic pressure, we use the equation for osmotic pressure, which is:

or,

where,
= osmotic pressure of the solution
i = Van't hoff factor = 1 (for non-electrolytes)
= mass of sucrose = 3.40 g
= molar mass of sucrose = 342.3 g/mol
= Volume of solution = 1 L
R = Gas constant = 
T = temperature of the solution = ![20^oC=[20+273]K=293K](https://tex.z-dn.net/?f=20%5EoC%3D%5B20%2B273%5DK%3D293K)
Putting values in above equation, we get:

Hence, the pressure that must be applied to the apparatus is 0.239 atm
18 electrons. With a -2 charge, that means it gains two electrons.
I believe the answer is C. (must be touching the object)
Someone please correct me if I am wrong.
Answer:

Raoult's law states that the vapor pressure of a solvent above a solution is equal to the vapor pressure of the pure solvent at the same temperature scaled by the mole fraction of the solvent present: Psolution=χsolventPosolvent.