Answer:
D
Explanation:
I think it is D. Think about it- if a human jumps, they are less than the gravitational force. But, if you are greater than the gravitational force, I think you will go into space.
Answer:
c = 0.898 J/g.°C
Explanation:
1) Given data:
Mass of water = 23.0 g
Initial temperature = 25.4°C
Final temperature = 42.8° C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Specific heat capacity of water is 4.18 J/g°C
ΔT = 42.8°C - 25.4°C
ΔT = 17.4°C
Q = 23.0 g × × 4.18 J/g°C × 17.4°C
Q = 1672.84 j
2) Given data:
Mass of metal = 120.7 g
Initial temperature = 90.5°C
Final temperature = 25.7 ° C
Heat released = 7020 J
Specific heat capacity of metal = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.7°C - 90.5°C
ΔT = -64.8°C
7020 J = 120.7 g × c × -64.8°C
7020 J = -7821.36 g.°C × c
c = 7020 J / -7821.36 g.°C
c = 0.898 J/g.°C
Negative sign shows heat is released.
the mass percent of sugar in this solution is 46%.
Answer:
Solution given:
mass of solute=34.5g
mass of solvent=75g
mass percent=
=
Luster is the term- means the shininess of the metal
<h3><u>Answer;</u></h3>
<em>-49 °C</em>
<h3><u>Explanation and solution;</u></h3>
- Considering the fact that, the specific heat capacity of aluminum is 0.903 J/g x C, and the heat of vaporization of water at 25 C is 44.0 KJ/mol.
Moles water = 0.48 g / 18.02 g/mol
=0.0266 moles
<em>Heat lost by water</em> = 0.0266 mol x 44.0 kJ/mol
=1.17 kJ => 1170 J
<em>But heat lost =heat gained</em>
<em>Therefore;</em> Heat gained by aluminium = 1170 J
1170 = 55 x 0.903 ( T - 25) = 49.7 T - 1242
1170 + 1242 = 49.7 T
T = 48.5 °C ( 49 °C <em>at two significant figures)</em>
<em>Hence</em>, final temperature = 49 °C