Answer:
15.7 m
Explanation:
m = mass of the sled = 125 kg
v₀ = initial speed of the sled = 8.1 m/s
v = final speed of sled = 0 m/s
F = force applied by the brakes in opposite direction of motion = 261
d = stopping distance for the sled
Using work-change in kinetic energy theorem
- F d = (0.5) m (v² - v₀²)
- (261) d = (0.5) (125) (0² - 8.1²)
d = 15.7 m
Answer:
10.23m/s^2
Explanation:
GIven data
mass of elevator = 2125 kg
Force= 21,750 N
Required
The maximum acceleration upward
F= ma
a= F/m
a=21,750/2125
a= 10.23m/s^2
Hence the acceleration is 10.23m/s^2
It is defined by their wavelength. Different colors have different wavelengths. For example, radio waves have a really long wavelength, whereas gamma-rays have a very short wavelength.
Answer:
phase difference = π / 2
constructive interference
Explanation:
Given data
wavelength = 420 nm
1st beam = 105 nm
path difference = 105 nm
to find out
phase difference and interference pattern of the two beams
solution
we use here equation of phase difference that is
phase difference = 2π / wavelength × Δx
put here value
phase difference = 2π / 420 × 105
phase difference = π / 2
and
we know that here path difference Δx is the integral multiple of the wavelength so it will be constructive interference
Δx is wavelength / 4
Well, as the waves move it moves the rope as if its trying to take shape of it. Since the rope it light it will move along the ocean and the ocean will keep pushing up on the rope. (even without the waves the water is pushing the rope up so it can take its shape)
Maybe that'll help