Answer:
9.3 g/cm³
Explanation:
First, convert kg to g:
0.485 kg × (1000 g / kg) = 485 g
Density is mass divided by volume:
D = (485 g) / (52 cm³)
D = 9.33 g/cm³
Rounding to two significant figures, the density is 9.3 g/cm³.
Answer:
We know that for a pendulum of length L, the period (time for a complete swing) is defined as:
T = 2*pi*√(L/g)
where:
pi = 3.14
L = length of the pendulum
g = gravitational acceleration = 9.8 m/s^2
Now, we can think on the swing as a pendulum, where the child is the mass of the pendulum.
Then the period is independent of:
The mass of the child
The initial angle
Where the restriction of not swing to high is because this model works for small angles, and when the swing is to high the problem becomes more complex.
The presence of potential energy between particles supports the shape of a heating curve.
<h2>Potential energy and heating curve</h2>
The existence of potential energy between particles supports the shape of a heating curve because potential energy causes the heating curve flat as well as in curve form. The heating curves show how the temperature changes as a substance is heated up.
The potential energy of the molecules will increase anytime energy is being supplied to the system but the temperature is not increasing so when the heating curve go flat it means there is potential energy so we can conclude that the existence of potential energy between particles supports the shape of a heating curve.
Learn more about heating curve here: brainly.com/question/11991469
Learn more: brainly.com/question/26153233
Answer:
D. location
Explanation:
The gravitational field strength of Earth is determined by the virtue of the location within the Earth's gravitational field.
That's why all objects regardless of their mass, shape, and size free fall towards the Earth with an acceleration equal to the acceleration at that location in the absence of air resistance.
According to the gravitational force between two bodies, the force experienced by one body due to the other is independent of its own mass.
The gravitational force is given by equation
F = GMm/r²
If F is the force acting on the smaller body of mass 'm', then
F = ma
Therefore, the equation becomes,
ma = GMm/r²
a = GM/r²
The value of 'a' changes with respect to the value of 'r' such that if 'r' is the radius of the Earth, then the acceleration at a height 'h' from Earth surface is given by
a = GM/(r+h)²
Here it is clear that the acceleration at any point is only the inherent property of the Earth itself.
The gravitational field strength of Earth is determined by the virtue of the location within the Earth's gravitational field.