Answer:
Ksp = [ Cu+² ] [ OH-] ²
molar mass Cu(oH )2 ==> M= 63.546 (1) + 16 (2) + 1 (2) = 97.546 g/mol
Ksp = [ Cu+² ] [ OH-] ²
Ksp [ cu (OH)2 ] = 2.2 × 10-²⁰
|__________|___<u>Cu</u><u>+</u><u>²</u><u> </u>__|_<u>2</u><u>OH</u><u>-</u>____|
|<u>Initial concentration(M</u>)|___<u>0</u>__|_<u>0</u>______|
<u>|Change in concentration(M)</u>|_<u>+S</u><u> </u>|__<u>+2S</u>__|
|<u>Equilibrium concentration(M)|</u><u>_S</u><u> </u><u>_</u><u>|</u><u>2S___</u><u>|</u>
Ksp = [ Cu+² ] [ OH-] ²
2.2 ×10-²⁰ = (S)(2S)²= 4S³
![s = \sqrt[3]{ \frac{2.2 \times {10}^{ - 20} }{4} } = 1.8 \times {10}^{ - 7}](https://tex.z-dn.net/?f=s%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B2.2%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%2020%7D%20%7D%7B4%7D%20%7D%20%20%3D%201.8%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%207%7D%20)
S = 1.8 × 10-⁷ M
The molar solubility of Cu(OH)2 is 1.8 × 10-⁷ M
Solubility of Cu (OH)2 =

<h3>
Solubility of Cu (OH)2 = 1.75428 × 10 -⁵ g/ L</h3>
I hope I helped you^_^
<u>Given:</u>
Initial amount of carbon, A₀ = 16 g
Decay model = 16exp(-0.000121t)
t = 90769076 years
<u>To determine:</u>
the amount of C-14 after 90769076 years
<u>Explanation:</u>
The radioactive decay model can be expressed as:
A = A₀exp(-kt)
where A = concentration of the radioactive species after time t
A₀ = initial concentration
k = decay constant
Based on the given data :
A = 16 * exp(-0.000121*90769076) = 16(0) = 0
Ans: Based on the decay model there will be no C-14 left after 90769076 years
C3H8 + O2 --> CO2(g) + H2O(g) + energy(heat)
butane + oxygen --> carbon dioxide + water + heat
Answer:
ΔG = 16.218 KJ/mol
Explanation:
- dihydroxyacetone phosphate ↔ glyceraldehyde-3-phosphate
∴ ΔG° = 7.53 KJ/mol * ( 1000 J / KJ ) = 7530 J/mol
∴ R = 8.314 J/K.mol
∴ T = 298 K
∴ Q = [glyceraldehyde-3-phosphate] / [dihydroxyacetone phosphate]
⇒ Q = 0.00300 / 0.100 = 0.03
⇒ ΔG = 7530J/mol - (( 8.314 J/K.mol) * ( 298 K ) * Ln ( 0.03 ))
⇒ ΔG = 16217.7496 J/mol ( 16.218 KJ/mol )
Answer:
The correct answer is "-268.667°C".
Explanation:
Given:
Temperature,
= 4.483 K (below)
Now,
The formula of temperature conversion will be:
⇒ 
By putting the values, we get
⇒ 
⇒ 
Thus the above is the correct answer.